• Title/Summary/Keyword: Backpropagation learning

Search Result 264, Processing Time 0.028 seconds

Improve Digit Recognition Capability of Backpropagation Neural Networks by Enhancing Image Preprocessing Technique

  • Feng, Xiongfeng;Kubik, K.Bogunia
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.49.4-49
    • /
    • 2001
  • Digit recognition based on backpropagation neural networks, as an important application of pattern recognition, was attracted much attention. Although it has the advantages of parallel calculation, high error-tolerance, and learning capability, better recognition effects can only be achieved with some specific fixed format input of the digit image. Therefore, digit image preprocessing ability directly affects the accuracy of recognition. Here using Matlab software, the digit image was enhanced by resizing and neutral-rotating the extracted digit image, which improved the digit recognition capability of the backpropagation neural network under practical conditions. This method may also be helpful for recognition of other patterns with backpropagation neural networks.

  • PDF

Recurrent Neural Network with Backpropagation Through Time Learning Algorithm for Arabic Phoneme Recognition

  • Ismail, Saliza;Ahmad, Abdul Manan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1033-1036
    • /
    • 2004
  • The study on speech recognition and understanding has been done for many years. In this paper, we propose a new type of recurrent neural network architecture for speech recognition, in which each output unit is connected to itself and is also fully connected to other output units and all hidden units [1]. Besides that, we also proposed the new architecture and the learning algorithm of recurrent neural network such as Backpropagation Through Time (BPTT, which well-suited. The aim of the study was to observe the difference of Arabic's alphabet like "alif" until "ya". The purpose of this research is to upgrade the people's knowledge and understanding on Arabic's alphabet or word by using Recurrent Neural Network (RNN) and Backpropagation Through Time (BPTT) learning algorithm. 4 speakers (a mixture of male and female) are trained in quiet environment. Neural network is well-known as a technique that has the ability to classified nonlinear problem. Today, lots of researches have been done in applying Neural Network towards the solution of speech recognition [2] such as Arabic. The Arabic language offers a number of challenges for speech recognition [3]. Even through positive results have been obtained from the continuous study, research on minimizing the error rate is still gaining lots attention. This research utilizes Recurrent Neural Network, one of Neural Network technique to observe the difference of alphabet "alif" until "ya".

  • PDF

A Separate Learning Algorithm of Two-Layered Networks with Target Values of Hidden Nodes (은닉노드 목표 값을 가진 2개 층 신경망의 분리학습 알고리즘)

  • Choi, Bum-Ghi;Lee, Ju-Hong;Park, Tae-Su
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.12
    • /
    • pp.999-1007
    • /
    • 2006
  • The Backpropagation learning algorithm is known to have slow and false convergence aroused from plateau and local minima. Many substitutes for backpropagation announced so far appear to pay some trade-off for convergence speed and stability of convergence according to parameters. Here, a new algorithm is proposed, which avoids some of those problems associated with the conventional backpropagation problems, especially with local minima, and gives relatively stable and fast convergence with low storage requirement. This is the separate learning algorithm in which the upper connections, hidden-to-output, and the lower connections, input-to-hidden, separately trained. This algorithm requires less computational work than the conventional backpropagation and other improved algorithms. It is shown in various classification problems to be relatively reliable on the overall performance.

A Learning Algorithm for a Recurrent Neural Network Base on Dual Extended Kalman Filter (두개의 Extended Kalman Filter를 이용한 Recurrent Neural Network 학습 알고리듬)

  • Song, Myung-Geun;Kim, Sang-Hee;Park, Won-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.349-351
    • /
    • 2004
  • The classical dynamic backpropagation learning algorithm has the problems of learning speed and the determine of learning parameter. The Extend Kalman Filter(EKF) is used effectively for a state estimation method for a non linear dynamic system. This paper presents a learning algorithm using Dual Extended Kalman Filter(DEKF) for Fully Recurrent Neural Network(FRNN). This DEKF learning algorithm gives the minimum variance estimate of the weights and the hidden outputs. The proposed DEKF learning algorithm is applied to the system identification of a nonlinear SISO system and compared with dynamic backpropagation learning algorithm.

  • PDF

Neural Networks and Logistic Models for Classification: A Case Study

  • Hwang, Chang-Ha
    • Journal of the Korean Data and Information Science Society
    • /
    • v.7 no.1
    • /
    • pp.13-19
    • /
    • 1996
  • In this paper, we study and compare two types of methods for classification when both continuous and categorical variables are used to describe each individual. One is neural network(NN) method using backpropagation learning(BPL). The other is logistic model(LM) method. Both the NN and LM are based on projections of the data in directions determined from interconnection weights.

  • PDF

Constructing Neural Networks Using Genetic Algorithm and Learning Neural Networks Using Various Learning Algorithms (유전알고리즘을 이용한 신경망의 구성 및 다양한 학습 알고리즘을 이용한 신경망의 학습)

  • 양영순;한상민
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.04a
    • /
    • pp.216-225
    • /
    • 1998
  • Although artificial neural network based on backpropagation algorithm is an excellent system simulator, it has still unsolved problems of its structure-decision and learning method. That is, we cannot find a general approach to decide the structure of the neural network and cannot train it satisfactorily because of the local optimum point which it frequently falls into. In addition, although there are many successful applications using backpropagation learning algorithm, there are few efforts to improve the learning algorithm itself. In this study, we suggest a general way to construct the hidden layer of the neural network using binary genetic algorithm and also propose the various learning methods by which the global minimum value of the teaming error can be obtained. A XOR problem and line heating problems are investigated as examples.

  • PDF

Improved Error Backpropagation by Elastic Learning Rate and Online Update (가변학습율과 온라인모드를 이용한 개선된 EBP 알고리즘)

  • Lee, Tae-Seung;Park, Ho-Jin
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04b
    • /
    • pp.568-570
    • /
    • 2004
  • The error-backpropagation (EBP) algerithm for training multilayer perceptrons (MLPs) is known to have good features of robustness and economical efficiency. However, the algorithm has difficulty in selecting an optimal constant learning rate and thus results in non-optimal learning speed and inflexible operation for working data. This paper Introduces an elastic learning rate that guarantees convergence of learning and its local realization by online upoate of MLP parameters Into the original EBP algorithm in order to complement the non-optimality. The results of experiments on a speaker verification system with Korean speech database are presented and discussed to demonstrate the performance improvement of the proposed method in terms of learning speed and flexibility fer working data of the original EBP algorithm.

  • PDF

Heart Attack Prediction using Neural Network and Different Online Learning Methods

  • Antar, Rayana Khaled;ALotaibi, Shouq Talal;AlGhamdi, Manal
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.6
    • /
    • pp.77-88
    • /
    • 2021
  • Heart Failure represents a critical pathological case that is challenging to predict and discover at an early age, with a notable increase in morbidity and mortality. Machine Learning and Neural Network techniques play a crucial role in predicting heart attacks, diseases and more. These techniques give valuable perspectives for clinicians who may then adjust their diagnosis for each individual patient. This paper evaluated neural network models for heart attacks predictions. Several online learning methods were investigated to automatically and accurately predict heart attacks. The UCI dataset was used in this work to train and evaluate First Order and Second Order Online Learning methods; namely Backpropagation, Delta bar Delta, Levenberg Marquardt and QuickProp learning methods. An optimizer technique was also used to minimize the random noise in the database. A regularization concept was employed to further improve the generalization of the model. Results show that a three layers' NN model with a Backpropagation algorithm and Nadam optimizer achieved a promising accuracy for the heart attach prediction tasks.

The wavelet neural network using fuzzy concept for the nonlinear function learning approximation (비선형 함수 학습 근사화를 위한 퍼지 개념을 이용한 웨이브렛 신경망)

  • Byun, Oh-Sung;Moon, Sung-Ryong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.5
    • /
    • pp.397-404
    • /
    • 2002
  • In this paper, it is proposed wavelet neural network using the fuzzy concept with the fuzzy and the multi-resolution analysis(MRA) of wavelet transform. Also, it wishes to improve any nonlinear function learning approximation using this system. Here, the fuzzy concept is used the bell type fuzzy membership function. And the composition of wavelet has a unit size. It is used the backpropagation algorithm for learning of wavelet neural network using the fuzzy concept. It is used the multi-resolution analysis of wavelet transform, the bell type fuzzy membership function and the backpropagation algorithm for learning. This structure is confirmed to be improved approximation performance than the conventional algorithms from one dimension and two dimensions function through simulation.

Improved Learning Algorithm with Variable Activating Functions

  • Pak, Ro-Jin
    • Journal of the Korean Data and Information Science Society
    • /
    • v.16 no.4
    • /
    • pp.815-821
    • /
    • 2005
  • Among the various artificial neural networks the backpropagation network (BPN) has become a standard one. One of the components in a neural network is an activating function or a transfer function of which a representative function is a sigmoid. We have discovered that by updating the slope parameter of a sigmoid function simultaneous with the weights could improve performance of a BPN.

  • PDF