• 제목/요약/키워드: Backpropagation Neural Network

검색결과 449건 처리시간 0.028초

다층 신경회로망을 사용한 로봇 매니퓰레이터의 궤적제어 (Trajectoroy control for a Robot Manipulator by Using Multilayer Neural Network)

  • 안덕환;이상효
    • 한국통신학회논문지
    • /
    • 제16권11호
    • /
    • pp.1186-1193
    • /
    • 1991
  • 본 논문에서는 신경회로망을 사용한 로보트 매니퓰레이터의 궤적 제어 방법을 제안하였다. 매니퓰레이터에 가해지는 토크는 신경회로망이 출력인 feedforward 토크와 보조제어기로 사용되는 비례 미분 제어기PD 제어기의 출력인 feedback 토크의 합이다. 제안된 전경 회로망은 다층 신경회로로서 시간 지연 요소를 가지며 PD 제어기의 오차 토크를 사용하여 매니퓰레이터 이동력학 모델을 학습한다. errror backpropagation(BP) 학습 신경회로 제어기를 사용해보므로서 매니퓰레이터 동특성에 대한 정보를 미리 필요로 하지 않으며, 연결 가중치 값에 그러한 정보가 저장된다. 확인될 신경회로망의 특성을 컴퓨터 시뮬레이션을 통하여 입증한다.

  • PDF

새로운 다층 신경망 학습 알고리즘 (A new learning algorithm for multilayer neural networks)

  • 고진욱;이철희
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1998년도 추계종합학술대회 논문집
    • /
    • pp.1285-1288
    • /
    • 1998
  • In this paper, we propose a new learning algorithm for multilayer neural networks. In the error backpropagation that is widely used for training multilayer neural networks, weights are adjusted to reduce the error function that is sum of squared error for all the neurons in the output layer of the network. In the proposed learning algorithm, we consider each output of the output layer as a function of weights and adjust the weights directly so that the output neurons produce the desired outputs. Experiments show that the proposed algorithm outperforms the backpropagation learning algorithm.

  • PDF

인공신경망을 이용한 탄산가스 아크용접의 잔류응력 예측 (Predicting Method of Rosidual Stress Using Artificial Neural Network In $CO_2$ Are Weldling)

  • 조용준;이세현;엄기원
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1993년도 추계학술대회 논문집
    • /
    • pp.482-487
    • /
    • 1993
  • A prediction method for determining the welding residual stress by artificial neural network is proposed. A three-dimensional transient thermomechanical analysis has been performed for the CO $_{2}$ Arc Welding using the finite element method. The validity of the above results is demonstrated by experimental elastic stress relief method which is called Holl Drilling Method. The first part of numarical analysis performs a three-dimensional transient heat transfer anslysis, and the second part then uses results of the first part and performs a three-dimensional transient thermo-clasto-plastic analysis to compute transient and residual stresses in the weld. Data from the finite element method were used to train a backpropagation neural network to predict residual stress. Architecturally, the finite element method were used to train a backpropagation voltage and the current, a hidden layer to accommodate failure mechanism mapping, and an output layer for residual stress. The trained network was then applied to the prediction of residual stress in the four specimens. The results of predicted residual stress have been very encouraging.

  • PDF

신경망 모델을 이용한 선박-교각 최대 충돌력 추정 연구 (Peak Impact Force of Ship Bridge Collision Based on Neural Network Model)

  • 왕지엔;노재규
    • 해양환경안전학회지
    • /
    • 제28권1호
    • /
    • pp.175-183
    • /
    • 2022
  • 선박과 교각이 충돌하면 생명과 안전에 큰 위협이 될 수 있다. 따라서 선박-교각 충돌력 영향 인자를 식별하고 다양한 충돌 조건에서의 충돌력에 대한 연구의 필요성이 있다. 본 논문에서는 선박-교각 충돌의 유한요소 모델을 설정하고, 수치 시뮬레이션을 통해 선적상태, 운항속도, 충돌 각도의 세 가지 입력조건을 조합하여 50가지 케이스에서의 선박-교각 최대 충돌력을 계산하였다. 계산된 유한요소해석 결과를 사용하여 신경망 추정 모델을 학습하고 최대 충돌력을 추정함으로써 빠른 시간에 최대 충돌력을 추정하는 프로세스를 제안하였다. 신경망 예측 모델은 가장 기초적인 역전파 신경망과 시간정보를 고려할 수 있는 순환신경망인 Elman 신경망 2가지 모델을 사용하였다. 10가지 케이스의 테스트 데이터로 시험한 결과 Elman 신경망을 사용했을 경우에 평균상대오차가 4.566%로 역전파 신경망보다 나은 최대 충돌력 추정이 가능함을 확인하였고 8가지 케이스에서 5%이하의 상대오차를 보여 주었다. 본 신경망을 이용한 최대 충돌력 추정법은 유한요소해석을 수행하지 않아도 되므로 계산 시간이 짧아 선박 항해 중 충돌을 회피할 수 없는 경우 피해를 최소화하는 의사결정의 기초 방법으로 사용할 수 있다.

후향전파 알고리즘과 동적터널링 시스템을 조합한 다층신경망의 새로운 학습방법 (A new training method of multilayer neural networks using a hybrid of backpropagation algorithm and dynamic tunneling system)

  • 조용현
    • 전자공학회논문지B
    • /
    • 제33B권4호
    • /
    • pp.201-208
    • /
    • 1996
  • This paper proposes an efficient method for improving the training performance of the neural network using a hybrid of backpropagation algorithm and dynamic tunneling system.The backpropagation algorithm, which is the fast gradient descent method, is applied for high-speed optimization. The dynamic tunneling system, which is the deterministic method iwth a tunneling phenomenone, is applied for blobal optimization. Converging to the local minima by using the backpropagation algorithm, the approximate initial point for escaping the local minima is estimated by the pattern classification, and the simulation results show that the performance of proposed method is superior th that of backpropagation algorithm with randomized initial point settings.

  • PDF

적응 역전파 학습 알고리즘을 이용한 신경회로망 제어기 설계 (Direct Adaptive Control Based on Neural Networks Using An Adaptive Backpropagation Algorithm)

  • 최경미;최윤호;박진배
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.1730-1731
    • /
    • 2007
  • In this paper, we present a direct adaptive control method using neural networks for the control of nonlinear systems. The weights of neural networks are trained by an adaptive backpropagation algorithm based on Lyapunov stability theory. We develop the parameter update-laws using the neural network input and the error between the desired output and the output of nonlinear plant to update the weights of a neural network in the sense that Lyapunove stability theory. Beside the output tracking error is asymptotically converged to zero.

  • PDF

신경회로망을 이용한 물체 인식 (Object recognition of one D.O.F. tools by a backpropagation neural network)

  • 김흥봉;남광희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.996-1001
    • /
    • 1991
  • We consider the object recognition of industrial tools which have one degree of freedom. In the case of pliers, the shape varies as the jaw angle varies. Thus, a feature vector made from the boundary image also varies along with the jaw angle. But a pattern recognizer should have the ability of classifying objects without any regards to the angle variation. For a pattern recognizer we have utilized a backpropagation neural net. Feature vectors were made from Fourier descriptors of boundary images by truncating the high frequency components, and they were used as inputs to the neural net for training and recognition. In our experiments, backpropagation neural net outperforms the minimum distance rule which is widely used in the pattern recognition. The performance comparison also made under noisy environments.

  • PDF

신경회로망과 틸팅을 이용한 이족 보행로봇의 ZMP 개선 연구 (A Study on ZMP Improvement of Biped Walking Robot Using Neural Network and Tilting)

  • 김병수;남규민;이순걸
    • 로봇학회논문지
    • /
    • 제6권4호
    • /
    • pp.301-307
    • /
    • 2011
  • Based on the stability criteria of ZMP (Zero Moment Point), this paper proposes an adjusting algorithm that modifies walking trajectory of a bipedal robot for stable walking by analyzing ZMP trajectory of it. In order to maintain walking balance of the bipedal robot, ZMP should be located within a supporting polygon that is determined by the foot supporting area with stability margin. Initially tilting imposed to the trajectory of the upper body is proposed to transfer ZMP of the given walking trajectory into the stable region for the minimum stability. A neural network method is also proposed for the stable walking trajectory of the biped robot. It uses backpropagation learning with angles and angular velocities of all joints with tilting to get the improved walking trajectory. By applying the optimized walking trajectory that is obtained with the neural network model, the ZMP trajectory of the bipedal robot is certainly located within a stable area of the supporting polygon. Experimental results show that the optimally learned trajectory with neural network gives more stability even though the tilting of the pelvic joint has a great role for walking stability.

개선된 IAFC 퍼지 신경회로망을 이용한 차량 번호판 인식 (Licence Plate Recognition Using Improved IAFC Fuzzy Neural Network)

  • 이시현;최시영;이세열;김용수
    • 한국지능시스템학회논문지
    • /
    • 제19권1호
    • /
    • pp.6-12
    • /
    • 2009
  • 본 논문에서는 입력된 차량영상에서 번호판을 추출하여 인식하는 시스템을 제안하였다. 개선된 IAFC 퍼지 신경회로망을 사용하여 자동차 번호판의 후보영역을 추출하고, 형태학적 필터를 사용하여 잡음을 제거하였다. 추출한 자동차 번호판을 정형화하기 위하여 허프 변환과 기하학적 변환을 사용하였다. 투영기법을 사용하여 분리한 숫자를 오류역전파 신경회로망을 사용하여 인식하였다.

신경회로망 알고리즘과 ATmega128칩을 활용한 자동차용 지능형 AQS 시스템 (Intelligent AQS System with Artificial Neural Network Algorithm and ATmega128 Chip in Automobile)

  • 정완영;이승철
    • 제어로봇시스템학회논문지
    • /
    • 제12권6호
    • /
    • pp.539-546
    • /
    • 2006
  • The Air Quality Sensor(AQS), located near the fresh air inlet, serves to reduce the amount of pollution entering the vehicle cabin through the HVAC(heating, ventilating, and air conditioning) system by sending a signal to close the fresh air inlet door/ventilation flap when the vehicle enters a high pollution area. The sensor module which includes two independent sensing elements for responding to diesel and gasoline exhaust gases, and temperature sensor and humidity sensor was designed for intelligent AQS in automobile. With this sensor module, AVR microcontroller was designed with back propagation neural network to a powerful gas/vapor pattern recognition when the motor vehicles pass a pollution area. Momentum back propagation algorithm was used in this study instead of normal backpropagation to reduce the teaming time of neural network. The signal from neural network was modified to control the inlet of automobile and display the result or alarm the situation in this study. One chip microcontroller, ATmega 128L(ATmega Ltd., USA) was used for the control and display. And our developed system can intelligently reduce the malfunction of AQS from the dampness of air or dense fog with the backpropagation neural network and the input sensor module with four sensing elements such as reducing gas sensing element, oxidizing gas sensing element, temperature sensing element and humidity sensing element.