• 제목/요약/키워드: Background updating

검색결과 57건 처리시간 0.026초

전자책에서 동적 사용자 피드백의 편집을 위한 피드백 클루 모델의 제안 (A Feedback Clue Model for Dynamically Updating e-book Content from User Feedback)

  • 최자령;황정수;신은주;임순범
    • 한국멀티미디어학회논문지
    • /
    • 제20권2호
    • /
    • pp.313-321
    • /
    • 2017
  • The emergence of E-book have allowed readers to interact with other readers and to actively participate (e.g. social reading). Furthermore, there is a growing demand in writer's community to take the advantage of the feedback from their readers to update the content of E-book. To do that, they require the service that utilizes the user feedback while creating or updating the e-book content. This study aims to let authors collect and to apply the reader's feedback on E-book content. However, in order to apply the user feedback, users first need to explicitly type the feedback, and even if they do, authors need to develop the software to automatically analyze and to apply the user feedback. This makes difficult for authors without programming background to produce E-book with automatic content adaptation. In this paper, we propose Feedback Clue Model to generate, analyze and apply the user feedback into E-book content. Based on this model, we develop the block editor which allows easy implementation of E-book that can be dynamically updated.

Online Estimation of Rotational Inertia of an Excavator Based on Recursive Least Squares with Multiple Forgetting

  • Oh, Kwangseok;Yi, Kyong Su;Seo, Jaho;Kim, Yongrae;Lee, Geunho
    • 드라이브 ㆍ 컨트롤
    • /
    • 제14권3호
    • /
    • pp.40-49
    • /
    • 2017
  • This study presents an online estimation of an excavator's rotational inertia by using recursive least square with forgetting. It is difficult to measure rotational inertia in real systems. Against this background, online estimation of rotational inertia is essential for improving safety and automation of construction equipment such as excavators because changes in inertial parameter impact dynamic characteristics. Regarding an excavator, rotational inertia for swing motion may change significantly according to working posture and digging conditions. Hence, rotational inertia estimation by predicting swing motion is critical for enhancing working safety and automation. Swing velocity and damping coefficient were used for rotational inertia estimation in this study. Updating rules are proposed for enhancing convergence performance by using the damping coefficient and forgetting factors. The proposed estimation algorithm uses three forgetting factors to estimate time-varying rotational inertia, damping coefficient, and torque with different variation rates. Rotational inertia in a typical working scenario was considered for reasonable performance evaluation. Three simulations were conducted by considering several digging conditions. Presented estimation results reveal the proposed estimation scheme is effective for estimating varying rotational inertia of the excavator.

객체 추적을 위한 적응적 배경영상 생성 방법 (A Method of Adative Background Image Generation for Object Tracking)

  • 지정규;이광형;김용균;오해석
    • 정보처리학회논문지B
    • /
    • 제10B권3호
    • /
    • pp.329-338
    • /
    • 2003
  • 실시간 영상에서 객체 추적은 수년간 컴퓨터 비전 및 여러 실용적 응용 분야에서 관심을 가지는 주제 중 하나이다. 하지만 배경영상의 잡음을 객체로 인식하는 오류로 인하여 추출하고자 하는 객체를 찾지 못하는 경우가 있다. 본 논문에서는 실시간 영상에서 적응적 배경영상을 이용하여 객체를 추출하고 추적하는 방법을 제안한다. 입력되는 영상에서 배경영역의 잡음을 제거하고 조명에 강인한 객체 추출을 위하여 객체영역이 아닌 배경영역 부분을 실시간으로 갱신함으로써 적응적 배경영상을 생성한다. 그리고 배경영상과 카메라로부터 입력되는 입력영상과의 차를 이용하여 객체를 추출한다 추출된 객체의 내부점을 이용하여 최소사각영역을 설정하고, 이를 통해 객체를 추적한다. 아울러 제안방법의 성능에 대한 실험결과를 기존 추적알고리즘과 비교, 분석하여 평가한다.

업데이트된 피부색을 이용한 얼굴 추적 시스템 (Face Tracking System Using Updated Skin Color)

  • 안경희;김종호
    • 한국멀티미디어학회논문지
    • /
    • 제18권5호
    • /
    • pp.610-619
    • /
    • 2015
  • *In this paper, we propose a real-time face tracking system using an adaptive face detector and a tracking algorithm. An image is divided into the regions of background and face candidate by a real-time updated skin color identifying system in order to accurately detect facial features. The facial characteristics are extracted using the five types of simple Haar-like features. The extracted features are reinterpreted by Principal Component Analysis (PCA), and the interpreted principal components are processed by Support Vector Machine (SVM) that classifies into facial and non-facial areas. The movement of the face is traced by Kalman filter and Mean shift, which use the static information of the detected faces and the differences between previous and current frames. The proposed system identifies the initial skin color and updates it through a real-time color detecting system. A similar background color can be removed by updating the skin color. Also, the performance increases up to 20% when the background color is reduced in comparison to extracting features from the entire region. The increased detection rate and speed are acquired by the usage of Kalman filter and Mean shift.

동적 배경에서의 고밀도 광류 기반 이동 객체 검출 (Dense Optical flow based Moving Object Detection at Dynamic Scenes)

  • 임효진;최연규;구엔 칵 쿵;정호열
    • 대한임베디드공학회논문지
    • /
    • 제11권5호
    • /
    • pp.277-285
    • /
    • 2016
  • Moving object detection system has been an emerging research field in various advanced driver assistance systems (ADAS) and surveillance system. In this paper, we propose two optical flow based moving object detection methods at dynamic scenes. Both proposed methods consist of three successive steps; pre-processing, foreground segmentation, and post-processing steps. Two proposed methods have the same pre-processing and post-processing steps, but different foreground segmentation step. Pre-processing calculates mainly optical flow map of which each pixel has the amplitude of motion vector. Dense optical flows are estimated by using Farneback technique, and the amplitude of the motion normalized into the range from 0 to 255 is assigned to each pixel of optical flow map. In the foreground segmentation step, moving object and background are classified by using the optical flow map. Here, we proposed two algorithms. One is Gaussian mixture model (GMM) based background subtraction, which is applied on optical map. Another is adaptive thresholding based foreground segmentation, which classifies each pixel into object and background by updating threshold value column by column. Through the simulations, we show that both optical flow based methods can achieve good enough object detection performances in dynamic scenes.

객체 추출 및 추적을 이용한 실시간 웹기반 영상감시 시스템 (Web-based Video Monitoring System on Real Time using Object Extraction and Tracking out)

  • 박재표;이광형;이종희;전문석
    • 전자공학회논문지CI
    • /
    • 제41권4호
    • /
    • pp.85-94
    • /
    • 2004
  • 실시간 영상에서 객체 추적은 수년간 컴퓨터 비전 및 여러 실용적 응용 분야에서 관심을 가지는 주제 중 하나이다 하지만 배경영상의 잡음을 객체로 인식하는 오류로 인하여 추출하고자 하는 객체를 찾지 못하는 경우가 있다. 본 논문에서는 실시간 영상에서 적응적 배경영상을 이용하여 객체를 추출하고 추적하는 방법을 제안한다. 입력되는 영상에서 배경영역의 잡음을 제거하고 조명에 강인한 객체 추출을 위하여 객체영역이 아닌 배경영역 부분을 실시간으로 갱신함으로써 적응적 배경영상을 생성한다. 그리고 배경영상과 카메라로부터 입력되는 입력영상과의 차를 이용하여 객체를 추출한다. 추출된 객체의 내부점을 이용하여 최소사각영역을 설정하고, 이를 통해 객체를 추적한다. 아울러 제안방법의 성능에 대한 실험결과를 기존 추적알고리즘과 비교, 분석하여 평가한다.

동적 및 정적 관심점을 이용하는 사람 계수 기법 (People Counting Method using Moving and Static Points of Interest)

  • 길종인;사이드 마흐모드포어;황환규;김만배
    • 방송공학회논문지
    • /
    • 제22권1호
    • /
    • pp.70-77
    • /
    • 2017
  • 다양한 사람계수 측정 방법중에서 동적 관심점을 이용하는 지도-기반 기법은 우수한 성능을 보여준다. 그러나 정적인 사람의 계수측정은 정적 관심점이 배경에 포함되기 때문에 어려움이 있다. 계수에 정적인 사람을 포함하기 위해서 정적인 사람이 정적점과 배경을 구별하는 것이 필요하다. 본 논문에서는 동적 및 정적 점들을 고려하는 사람계수 방법을 제안한다. 제안방법은 모션정보를 활용하여 두 점을 분리한다. 그러면 정적인 사람의 정적점들은 전경 마스크 처리 및 점 패턴 분석를 하여 분류된다. 실험결과에서는 제안 방법이 정적인 사람을 계수에 포함하기 때문에 보다 정확한 사람계수 값을 얻는다. 또한 배경 갱신을 이용함으로써 배경 변화에 따른 정적점 오분류 문제를 해결한다.

객체 추적을 위한 고유 배경의 동적 모델링 (Dynamic Modeling of Eigenbackground for Object Tracking)

  • 김성영
    • 한국컴퓨터정보학회논문지
    • /
    • 제17권4호
    • /
    • pp.67-74
    • /
    • 2012
  • 본 논문에서는 비디오 스트림으로부터 움직이는 객체를 추출하기 위해 고유 배경(eigenbackground)을 사용하여 효율적으로 배경을 모델링하는 방법을 제안한다. 배경은 모델링하더라도 시간이 지남에 따라 날씨나 조명의 변화에 따라 변화가 발생하므로 변화 요소를 반영할 수 있도록 배경 모델을 갱신해야 한다. 이를 위해 본 논문에서는 R-SVD 방법에 기반을 두고 배경 모델을 갱신하도록 한다. 이 때 영상 변화도를 정의하여 이 값에 따라 동적으로 배경을 모델링하여 처리시간을단축할 수 있도록 한다. 또한 고유 배경을 사용하는경우 충분한 훈련 데이터를사용해야만 정확한 모델을 생성할 수 있지만 본 논문에서는 적은 수의 데이터만을 사용하여 정확한 모델을 생성할 수 있도록 입력 프레임을 재구성하여 사용한다. 제안한 방법은 초기 고유 배경 모델 및 기존의 주기적으로 배경을 갱신하는 방법과의 비교를 통해 그 우수성을 확인한다.

Small Target Detecting and Tracking Using Mean Shifter Guided Kalman Filter

  • Ye, Soo-Young;Joo, Jae-Heum;Nam, Ki-Gon
    • Transactions on Electrical and Electronic Materials
    • /
    • 제14권4호
    • /
    • pp.187-192
    • /
    • 2013
  • Because of the importance of small target detection in infrared images, many studies have been carried out in this area. Using a Kalman filter and mean shift algorithm, this study proposes an algorithm to track multiple small moving targets even in cases of target disappearance and appearance in serial infrared images in an environment with many noises. Difference images, which highlight the background images estimated with a background estimation filter from the original images, have a relatively very bright value, which becomes a candidate target area. Multiple target tracking consists of a Kalman filter section (target position prediction) and candidate target classification section (target selection). The system removes error detection from the detection results of candidate targets in still images and associates targets in serial images. The final target detection locations were revised with the mean shift algorithm to have comparatively low tracking location errors and allow for continuous tracking with standard model updating. In the experiment with actual marine infrared serial images, the proposed system was compared with the Kalman filter method and mean shift algorithm. As a result, the proposed system recorded the lowest tracking location errors and ensured stable tracking with no tracking location diffusion.

적응적 얼굴 검출기와 칼만 필터를 이용한 실시간 얼굴 추적 시스템 (Real-Time Face Tracking System using Adaptive Face Detector and Kalman Filter)

  • 김종호;김상균;신범주
    • 한국IT서비스학회지
    • /
    • 제6권3호
    • /
    • pp.241-249
    • /
    • 2007
  • This paper describes a real-time face tracking system using effective detector and Kalman filter. In the proposed system, an image is separated into a background and an object using a real-time updated face color for effective face detection. The face features are extracted using the five types of simple Haar-like features. The extracted features are reinterpreted using Principal Component Analysis (PCA), and interpreted principal components are used for Support Vector Machine (SVM) that classifies the faces and non-faces. The moving face is traced with Kalman filter, which uses the static information of the detected faces and the dynamic information of changes between previous and current frames. The proposed system sets up an initial skin color and updates a region of a skin color through a moving skin color in a real time. It is possible to remove a background which has a similar color with a skin through updating a skin color in a real time. Also, as reducing a potential-face region using a skin color, the performance is increased up to 50% when comparing to the case of extracting features from a whole region.