• Title/Summary/Keyword: Back-Propagation

Search Result 1,472, Processing Time 0.025 seconds

The FE-MCBP for Recognition of the Tilted New-Type Vehicle License Plate (기울어진 신규차량번호판 인식을 위한 FE-MCBP)

  • Koo, Gun-Seo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.5
    • /
    • pp.73-81
    • /
    • 2007
  • This paper presents how to recognize the new-type vehicle license plate using multi-link recognizer after extract the features from characters. In order to assist this task, this paper proposed FE-MCBP to recognize each character that got through image preprocess, extract range of vehicle license plate and extract process of each character. FE-MCBP is the recognizer based on the features of the character, The recognizer is employed to identify the new-type vehicle licence plates which have both the hangul and the arabic numeral characters. And its recognition rate is improved 9.7 percent than the back propagation recognizer before. Also it makes use of extract of linear component and region coordinate generation technology to normalize a image of the tilted vehicle license plate. The recognition system of the new-type vehicle license plate make possible recognize a image of the tilted vehicle license plate when using this system. Also, this system can recognize the tilted or imperfect vehicle licence plates.

  • PDF

The Design of Adaptive Fuzzy Polynomial Neural Networks Architectures Based on Fuzzy Neural Networks and Self-Organizing Networks (퍼지뉴럴 네트워크와 자기구성 네트워크에 기초한 적응 퍼지 다항식 뉴럴네트워크 구조의 설계)

  • Park, Byeong-Jun;Oh, Sung-Kwun;Jang, Sung-Whan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.2
    • /
    • pp.126-135
    • /
    • 2002
  • The study is concerned with an approach to the design of new architectures of fuzzy neural networks and the discussion of comprehensive design methodology supporting their development. We propose an Adaptive Fuzzy Polynomial Neural Networks(APFNN) based on Fuzzy Neural Networks(FNN) and Self-organizing Networks(SON) for model identification of complex and nonlinear systems. The proposed AFPNN is generated from the mutually combined structure of both FNN and SON. The one and the other are considered as the premise and the consequence part of AFPNN, respectively. As the premise structure of AFPNN, FNN uses both the simplified fuzzy inference and error back-propagation teaming rule. The parameters of FNN are refined(optimized) using genetic algorithms(GAs). As the consequence structure of AFPNN, SON is realized by a polynomial type of mapping(linear, quadratic and modified quadratic) between input and output variables. In this study, we introduce two kinds of AFPNN architectures, namely the basic and the modified one. The basic and the modified architectures depend on the number of input variables and the order of polynomial in each layer of consequence structure. Owing to the specific features of two combined architectures, it is possible to consider the nonlinear characteristics of process system and to obtain the better output performance with superb predictive ability. The availability and feasibility of the AFPNN are discussed and illustrated with the aid of two representative numerical examples. The results show that the proposed AFPNN can produce the model with higher accuracy and predictive ability than any other method presented previously.

Optimization of coagulant dosing process in water purification system using neural network (신경회로망을 이용한 상수처리시스템의 응집제 주입공정 최적화)

  • Nam, Ui-Seok;Park, Jong-Jin;Jang, Seok-Ho;Cha, Sang-Yeop;U, Gwang-Bang;Lee, Bong-Guk;Han, Tae-Hwan;Go, Taek-Beom
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.6
    • /
    • pp.644-651
    • /
    • 1997
  • In the water purification plant, chemicals are injected for quick purification of raw water. It is clear that the amount of chemicals intrinsically depends on water quality such as turbidity, temperature, pH and alkalinity. However, the process of chemical reaction to improve water quality (e.g., turbidity) by chemicals is not yet fully clarified nor quantified. The feedback signal in the process of coagulant dosage, which should be measured (through the sensor of the plant) to compute the appropriate amount of chemicals, is also not available. Most traditional methods focus on judging the conditions of purifying reaction and determine the amounts of chemicals through manual operation of field experts using Jar-test data. In this paper, a systematic control strategy is proposed to derive the optimum dosage of coagulant, PAC(Polymerized Aluminium Chloride), using Jar-test results. A neural network model is developed for coagulant dosing and purifying process by means of six input variables (turbidity, temperature, pH, alkalinity of raw water, PAC feed rate, turbidity in flocculation) and one output variable, while considering the relationships to the reaction of coagulation and flocculation. The model is utilized to derive the optimum coagulant dosage (in the sense of minimizing turbidity of water in flocculator). The ability of the proposed control scheme validated through the field test has proved to be of considerable practical value.

  • PDF

Design and Implementation of Optimal Adaptive Generalized Stack Filter for Image Restoration Using Neural Networks (신경회로망을 이용한 영상복원용 적응형 일반스택 최적화 필터의 설계 및 구현)

  • Moon, Byoung-Jin;Kim, Kwang-Hee;Lee, Bae-Ho
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.7
    • /
    • pp.81-89
    • /
    • 1999
  • Image obtained by incomplete communication always include noise, blur and distortion, etc. In this paper, we propose and apply the new spatial filter algorithm, called an optimal adaptive generalized stack filter(AGSF), which optimizes adaptive generalized stack filter(AGSF) using neural network weight learning algorithm of back-propagation learning algorithm for improving noise removal and edge preservation rate. AGSF divides into two parts: generalized stack filter(GSF) and adaptive multistage median filter(AMMF), GSF improves the ability of stack filter algorithm and AMMF proposes the improved algorithm for reserving the sharp edge. Applied to neural network theory, the proposed algorithm improves the performance of the AGSF using two weight learning algorithms, such as the least mean absolute(LAM) and least mean square (LMS) algorithms. Simulation results of the proposed filter algorithm are presented and discussed.

  • PDF

Frequency-domain Waveform Inversion using Residual-selection Strategy (잔여 파동장 분리 기법을 이용한 주파수영역 파형역산)

  • Son, Woo-Hyun;Pyun, Suk-Joon;Kwak, Sang-Min
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.3
    • /
    • pp.214-219
    • /
    • 2011
  • We perform the frequency-domain waveform inversion based on the residual-selection strategy. In the residual-selection strategy, we classify time-domain residual wavefields into several groups according to the order of absolute amplitudes. Because the residual wavefields are normalized after regularization of the gradient directions within each group, the residual-selection strategy plays a role in enhancing the small-amplitude wavefields, which contributes to improving the deep parts of inverted subsurface images. After classifying residuals in the time domain, they are transformed to the frequency domain. Waveform inversion is performed in the frequency domain using the back-propagation technique which has been popularly used in reverse-time migration. The residual-selection strategy is applied to the SEG/EAGE salt and IFP Marmousi models. Numerical results show that the residual-selection strategy yields better results than the conventional frequency-domain waveform inversion.

An optimal design of wind turbine and ship structure based on neuro-response surface method

  • Lee, Jae-Chul;Shin, Sung-Chul;Kim, Soo-Young
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.4
    • /
    • pp.750-769
    • /
    • 2015
  • The geometry of engineering systems affects their performances. For this reason, the shape of engineering systems needs to be optimized in the initial design stage. However, engineering system design problems consist of multi-objective optimization and the performance analysis using commercial code or numerical analysis is generally time-consuming. To solve these problems, many engineers perform the optimization using the approximation model (response surface). The Response Surface Method (RSM) is generally used to predict the system performance in engineering research field, but RSM presents some prediction errors for highly nonlinear systems. The major objective of this research is to establish an optimal design method for multi-objective problems and confirm its applicability. The proposed process is composed of three parts: definition of geometry, generation of response surface, and optimization process. To reduce the time for performance analysis and minimize the prediction errors, the approximation model is generated using the Backpropagation Artificial Neural Network (BPANN) which is considered as Neuro-Response Surface Method (NRSM). The optimization is done for the generated response surface by non-dominated sorting genetic algorithm-II (NSGA-II). Through case studies of marine system and ship structure (substructure of floating offshore wind turbine considering hydrodynamics performances and bulk carrier bottom stiffened panels considering structure performance), we have confirmed the applicability of the proposed method for multi-objective side constraint optimization problems.

A Study of Land Suitability Analysis by Integrating GSIS with Artificial Neural Networks (GSIS와 인공신경망의 결합에 의한 토지적합성분석에 관한 연구)

  • 양옥진;정영동
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.18 no.2
    • /
    • pp.179-189
    • /
    • 2000
  • This study is tried to organic combination in implementing the suitability analysis of urban landuse between GSIS and ANN(Artificial Neural Network). ANN has merit that can decide rationally connectivity weights among neural network nodes through procedure of learning. It is estimated to be possible that replacing the weight among factors needed in spatial analysis of the connectivity weight on neural network. This study is composed of two kinds of neural networks to be executed. First neural network was used in the suitability analysis of landuse and second one was oriented to analyze of optimum landuse pattern. These neural networks were learned with back-propagation algorithm using the steepest gradient which is embodied by C++ program and used sigmoid function as a active function. Analysis results show landuse suitability map and optimum landuse pattern of study area consisted of residental, commercial. industrial and green zone in present zoning system. Each result map was written by the Grid format of Arc/Info. Also, suitability area presented in the suitability map and optimum landuse pattern show distribution pattern consistent with theroretical concept or urban landuse plan in aspect of location and space structure.

  • PDF

Optimal Welding Condition for the Inclined and Skewed Fillet Joints ill the Curved Block of a Ship (I) (선박 골블록의 경사 필렛 이음부의 적정 용접조건 (I))

  • PARK JU-YONG
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.6 s.61
    • /
    • pp.79-83
    • /
    • 2004
  • The curved blocks which compose the bow and stem of a ship contain many skewed joints that are inclined horizontally and vertically. Most of these joints have a large fitness error and are continuously changing their form and are not easily accessible. The welding position and parameter values should be appropriately set in correspondence to the shape and the inclination of the joints. The welding parameters such as current, voltage, travel speed, and melting rate, are related to each other and their values must be in a specific limited range for the sound welding. These correlations and the ranges are dependent up on the kind and size of wire, shielding gas, joint shape and fitness. To determine these relationships, extensive welding experiments were performed. The experimental data were processed using several information processing technologies. The regression method was used to determine the relationship between current voltage, and deposition rate. When a joint is inclined, the weld bead should be confined to a the limited size, inorder to avoid undercut as well as overlap due to flowing down of molten metal by gravity. The dependency of the limited weld size which is defined as the critical deposited area on various factors such as the horizontally and vertically inclined angle of the joint, skewed angle of the joint, up or down welding direction and weaving was investigated through a number of welding experiments. On the basis of this result, an ANN system was developed to estimate the critical deposited area. The ANN system consists of a 4 layer structure and uses an error back propagation learning algorithm. The estimated values of the ANN were validated using experimental values.

Design of Face Recognition algorithm Using PCA&LDA combined for Data Pre-Processing and Polynomial-based RBF Neural Networks (PCA와 LDA를 결합한 데이터 전 처리와 다항식 기반 RBFNNs을 이용한 얼굴 인식 알고리즘 설계)

  • Oh, Sung-Kwun;Yoo, Sung-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.5
    • /
    • pp.744-752
    • /
    • 2012
  • In this study, the Polynomial-based Radial Basis Function Neural Networks is proposed as an one of the recognition part of overall face recognition system that consists of two parts such as the preprocessing part and recognition part. The design methodology and procedure of the proposed pRBFNNs are presented to obtain the solution to high-dimensional pattern recognition problems. In data preprocessing part, Principal Component Analysis(PCA) which is generally used in face recognition, which is useful to express some classes using reduction, since it is effective to maintain the rate of recognition and to reduce the amount of data at the same time. However, because of there of the whole face image, it can not guarantee the detection rate about the change of viewpoint and whole image. Thus, to compensate for the defects, Linear Discriminant Analysis(LDA) is used to enhance the separation of different classes. In this paper, we combine the PCA&LDA algorithm and design the optimized pRBFNNs for recognition module. The proposed pRBFNNs architecture consists of three functional modules such as the condition part, the conclusion part, and the inference part as fuzzy rules formed in 'If-then' format. In the condition part of fuzzy rules, input space is partitioned with Fuzzy C-Means clustering. In the conclusion part of rules, the connection weight of pRBFNNs is represented as two kinds of polynomials such as constant, and linear. The coefficients of connection weight identified with back-propagation using gradient descent method. The output of the pRBFNNs model is obtained by fuzzy inference method in the inference part of fuzzy rules. The essential design parameters (including learning rate, momentum coefficient and fuzzification coefficient) of the networks are optimized by means of Differential Evolution. The proposed pRBFNNs are applied to face image(ex Yale, AT&T) datasets and then demonstrated from the viewpoint of the output performance and recognition rate.

Customer Classification System Using Incrementally Ensemble SVM (점진적 앙상블 SVM을 이용한 고객 분류 시스템)

  • Park, Sang-Ho;Lee, Jong-In;Park, Sun;Kang, Yun-Hee;Lee, Ju-Hong
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.10a
    • /
    • pp.190-192
    • /
    • 2003
  • 소비자의 신용 대출 규모가 점차 증가하면서 기업에서 고객의 신용 등급에 의한 정확한 고객 분류를 필요로 하고 있다 이를 위해 판별 분석과 신경망의 역전파(BP: Back Propagation)를 이용한 고객 분류 시스템이 연구되었다. 그러나, 판별 분석을 사용한 방법은 불규칙한 신용 거래의 성향을 보이는 비정규 분포의 고객 데이터의 영향으로 여러 개의 판별 함수와 판별점이 존재하여 분류 정확도가 떨어지는 단점이 있다. 신경망을 이용한 방법은 불규칙한 신용 거래의 성향을 보이는 고객 데이터에 의해서, 지역 최소점(Local Minima)에 빠져 최대의 분류 정확률을 보이는 분류자를 얻지 못하는 경우가 발생할 수 있다. 본 논문에서는 이러한 기존 연구의 분류 정확률을 저하시키는 단점을 해결하기 위해 SVM(Support Vector Machine)을 사용하여 고객의 신용 등급을 분류하는 방법을 제안한다. SVM은 SV(Support Vector)의 수에 의해서 학습 성능이 좌우되므로, 불규칙한 거래 성향을 보이는 고객에 대해서도 높은 차원으로의 매핑을 통하여, 효과적으로 학습시킬 수 있어 분류의 정확도를 높일 수 있다 하지만, SVM은 근사화 알고리즘(Approximation Algorithms)을 이용하므로 분류 정확도가 이론적인 성능에 미치지 못한다. 따라서, 본 논문은 점진적 앙상블 SVM을 사용하여, 기존의 고객 분류 시스템의 문제점을 해결하고 실제적으로 SVM의 분류 정확률을 높인다. 실험 결과는 점진적 앙상블 SVM을 이용한 방법의 정확성이 기존의 방법보다 높다는 것을 보여준다.

  • PDF