DOI QR코드

DOI QR Code

Frequency-domain Waveform Inversion using Residual-selection Strategy

잔여 파동장 분리 기법을 이용한 주파수영역 파형역산

  • Son, Woo-Hyun (Department of Energy Systems Engineering, Seoul National University) ;
  • Pyun, Suk-Joon (Department of Energy Resources Engineering, Inha University) ;
  • Kwak, Sang-Min (Department of Energy Systems Engineering, Seoul National University)
  • 손우현 (서울대학교 에너지시스템공학부) ;
  • 편석준 (인하대학교 에너지자원공학과) ;
  • 곽상민 (서울대학교 에너지시스템공학부)
  • Received : 2011.06.22
  • Accepted : 2011.07.14
  • Published : 2011.08.31

Abstract

We perform the frequency-domain waveform inversion based on the residual-selection strategy. In the residual-selection strategy, we classify time-domain residual wavefields into several groups according to the order of absolute amplitudes. Because the residual wavefields are normalized after regularization of the gradient directions within each group, the residual-selection strategy plays a role in enhancing the small-amplitude wavefields, which contributes to improving the deep parts of inverted subsurface images. After classifying residuals in the time domain, they are transformed to the frequency domain. Waveform inversion is performed in the frequency domain using the back-propagation technique which has been popularly used in reverse-time migration. The residual-selection strategy is applied to the SEG/EAGE salt and IFP Marmousi models. Numerical results show that the residual-selection strategy yields better results than the conventional frequency-domain waveform inversion.

본 논문에서는 시간영역에서 분리된 잔여 파동장을 이용하여 주파수영역 파형역산을 수행하였다. 시간영역 잔여 파동장들을 절대값의 크기에 따라 정렬하여 분류하고, 이를 여러 개의 그룹으로 분리하였다. 분리된 잔여 파동장들은 각 그룹별로 목적함수의 경사 방향을 정규화한 후 평균하기 때문에 통상적인 잔여 파동장에서 작은 크기를 가지는 파동장들을 상대적으로 강조하는 효과가 있고, 이는 파형역산 시 심부구조의 이미지 향상에 도움을 준다. 파형역산은 시간영역에서 분리된 잔여 파동장을 이용하여 주파수영역에서 수행되며, 목적함수의 경사방향은 구조보정에서 많이 쓰이는 역전파 기법을 적용하여 계산된다. 본 연구에서 제안한 알고리듬의 타당성을 확인하기 위하여 SEG/EAGE 암염 모델과 Marmousi 모델을 이용하여 파형역산을 수행하였다. 역산 결과를 통해 제안된 알고리즘이 일반적인 주파수영역 파형역산에 비해 심부구조에 대하여 향상된 결과를 제시함을 확인하였다.

Keywords

Acknowledgement

Supported by : 한국에너지 기술평가원(KETEP)

References

  1. Aminzadeh, F., Burkhard, N., Nicoletis, L., Rocca, F., and Wyatt, K., 1994, SEG/EAGE 3-D modeling project: 2nd update, The Leading Edge, 13, 949-952. https://doi.org/10.1190/1.1437054
  2. Brenders, A. J., and Pratt, R. G., 2007, Full waveform tomography for lithospheric imaging: Results from a blind test in a realistic crustal model, Geophys. J. Int., 168, 133-151. https://doi.org/10.1111/j.1365-246X.2006.03156.x
  3. Brossier, R., Operto, S., and Virieux, J., 2009, Seismic imaging of complex onshore structures by 2D elastic frequencydomain full-waveform inversion, Geophysics, 74, WCC63-WCC76.
  4. Bunks, C., Saleck, F. M., Zaleski, S., and Chavent, G., 1995, Multiscale seismic waveform inversion, Geophysics, 60, 1457-1473. https://doi.org/10.1190/1.1443880
  5. Crase, E., Pica, A., Noble, M., McDonald, J., and Tarantola, A., 1990, Robust elastic nonlinear waveform inversion: application to real data, Geophysics, 55, 527-538. https://doi.org/10.1190/1.1442864
  6. Djikpesse, H. A., and Tarantola, A., 1999, Multiparameter l1 norm waveform fitting: Interpretation of Gulf of Mexico seismograms, Geophysics, 64, 1023-1035. https://doi.org/10.1190/1.1444611
  7. Pratt, R. G., Shin, C., and Hicks, G. J., 1998, Gauss-Newton and full Newton methods in frequency-space seismic waveform inversion, Geophys. J. Int., 133, 341-362. https://doi.org/10.1046/j.1365-246X.1998.00498.x
  8. Pyun, S., Son, W., and Shin, S., 2009, Frequency-domain waveform inversion using an 11-norm objective function, Expl. Geophys., 40, 227-232. https://doi.org/10.1071/EG08103
  9. Ravaut, C., Operto, S., Improta, L., Virieux, J., Herrero, A., and Dell' Aversana, P., 2004, Multi-scale imaging of complex structures from multifold wide-aperture seismic data by frequency-domain full-wavefield inversions: Application to a thrust belt, Geophys. J. Int., 159, 1032-1056. https://doi.org/10.1111/j.1365-246X.2004.02442.x
  10. Shin, C., S. Jang, and Min, D. -J., 2001, Improved amplitude preservation for prestack depth migration by inverse scattering theory, Geophys. Prospect., 49, 592-606. https://doi.org/10.1046/j.1365-2478.2001.00279.x
  11. Shin, C., Pyun, S., and Bednar, J. B., 2007, Comparison of waveform inversion, part 1: conventional wavefield vs logarithmic wavefield, Geophys. Prospect., 55, 449-464. https://doi.org/10.1111/j.1365-2478.2007.00617.x
  12. Sirgue, L., and Pratt, R. G., 2003, Waveform inversion under realistic conditions: Mitigation of non-linearity, 73rd Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 694-697.
  13. Tarantola, A., 1984, Inversion of seismic reflection data in the acoustic approximation, Geophysics, 49, 1259-1266. https://doi.org/10.1190/1.1441754
  14. Versteeg, R., 1994, The Marmousi experience: Velocity model determination on a synthetic complex data set, The Leading Edge, 13, 927-936. https://doi.org/10.1190/1.1437051