• Title/Summary/Keyword: Back-Fill

Search Result 96, Processing Time 0.023 seconds

Development and Characteristics of Thixotropic Grout based on Colloidal Silica (실리카 콜로이드를 이용한 가소성 그라우트의 개발 및 공학적 특성)

  • Ryu, Dong-Sung;Jeong, Gyeong-Hwan;Shin, Min-Sik;Kim, Dong-Hae;Lee, Jun-Seok;Jung, Du-Hwoe
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1283-1290
    • /
    • 2005
  • A thixotropic grout has been newly developed for the use of back-filling a tail void in the shield tunnel and filling up ground voids. The grout developed in the study is a mixture of colloidal silica, cement and some functional additives. Its engineering characteristics was investigated by measuring a viscosity and unconfined compressive strengths. The optimum mixing proportion for an effective thixotropic grout was proposed through several repeated laboratory tests. The various physical properties such as thixotropy, unconfined compressive strengths, and durability of the thixotropic grout and the gels produced from the grout were compared with those of the well-known waterglass grout such as L.W.. The thixotropic grout developed in the study exhibited an excellent performance for back-filling of tail voids, based on experimental results compared to the existing waterglass grout.

  • PDF

Case history in prediction of consolidation settlement and monitoring (준설매립 초연약지반의 압밀침하 거동 및 계측 사례)

  • Jeon, Je-Sung;Lee, Jong-Wook;Im, Eun-Sang;Kim, Jae-Hong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1712-1716
    • /
    • 2008
  • Performance of ground improvement project using prefabricated vertical drains of condition, in which approximately 10m dredged fill overlies original soft foundation layer in the coastal area has been conducted. From field monitoring results, excessive ground settlement compared to predicted settlement in design stage developed during the following one year. In order to predict the final consolidation behavior, recalculation of consolidation settlements and back analysis using observed settlements were conducted. Field monitoring results of surface settlements were evaluated, and then corrected because large shear deformation was occurred by construction events in the early stages of consolidation. To predict the consolidation behavior, material functions and in-situ conditions from laboratory consolidation test were re-analyzed. Using these results, height of additional embankment is estimated to satisfy residual settlement limit and maintain an adequate ground elevation. The recalculated time-settlement curve has been compared to field monitoring results after additional surcharge was applied.

  • PDF

Study on the Efficiency of Si-cell Depending on the Texturing (표면 거칠기와 분포 상태에 따른 Si-셀 효율에 관한 연구)

  • Oh, Teresa
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.3
    • /
    • pp.189-194
    • /
    • 2011
  • Si-cell was prepared with various types owing to the etching times textured by the KOH etching solution. The pn junction for solar cell was prepared on p-type Si wafer by the furnace using the $POCl_3$ and oxygen mixed precursor, and the metalization was done using by the Al back electrode and Ag front electrode. Textured Si surface was etched by the pyramid formation. The efficiency and the fill factor was increased in the Si-cell with a large size of pyramids, because of the series resistances decrease depending on the increasing of the photon absorbance. Increasing of the absorbance occurred the induction of the short current and open voltage, and then the efficiency was increased.

Stability analysis on the concrete slab of the highest concrete-faced rock-fill dam in South Korea

  • Baak, Seung-Hyung;Cho, Gye-Chun;Song, Ki-Il
    • Geomechanics and Engineering
    • /
    • v.13 no.5
    • /
    • pp.881-892
    • /
    • 2017
  • Design and management of concrete slabs in concrete-faced rock-fill dams are crucial issues for stability and overall dam safety since cracks in the concrete face induced by stress, shrinkage, and deterioration can cause severe leakage from the reservoir into the dam. Especially, the increase of dam height to a certain level to enhance the storage capacity and to improve hydraulic stability can lead to undesirable deformation behavior and stress distribution in the existing dam body and in the concrete slabs. In such conditions, simulation of a concrete slab with a numerical method should involve the use of an interface element because the behavior of the concrete slab does not follow the behavior of the dam body when the dam body settles due to the increase of dam height. However, the interfacial properties between the dam body and the concrete slab have yet to be clearly defined. In this study, construction sequence of a 125 m high CFRD in South Korea is simulated with commercial FDM software. The proper interfacial properties of the concrete slab are estimated based on a comparison to monitored vertical displacement history obtained from the concrete slab. Possibility of shear strength failure under the critical condition is investigated based on the simplified model. Results present the significance of the interfacial properties of the concrete slab.

Over 8% efficient nanocrystal-derived Cu2ZnSnSe4 solar cells with molybdenum nitride barrier films in back contact structure

  • Pham, Hong Nhung;Jang, Yoon Hee;Park, Bo-In;Lee, Seung Yong;Lee, Doh-Kwon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.426.2-426.2
    • /
    • 2016
  • Numerous of researches are being conducted to improve the efficiency of $Cu_2ZnSnSe_4$ (CZTSe)-based photovoltaic devices, which is one of the most promising candidates for low cost and environment-friendly solar cells. In this work, we concentrate on the back contact of the devices. A proper thickness of $MoSe_2$ in back contact structure is believed to enhance adhesion and ohmic contact between Mo back contact and absorber layer. Nevertheless, too thick $MoSe_2$ layers that are grown during high-temperature selenization process can impede the current collection, thus resulting in low cell performance. By applying molybdenum nitride as a barrier in back contact structure, we were able to control the thickness of $MoSe_2$ layer, which resulted in lower series resistance and higher fill factor of CZTSe devices. The phase transformation of Mo-N binary system was systematically studied by changing $N_2$ concentration during the sputtering process. With a proper phase of Mo-N fabricated by using an adequate partial pressure of $N_2$, the efficiency of CZTSe solar cells as high as 8.31% was achieved while the average efficiency was improved by about 2% with respect to that of the referent cells where no barrier layer was employed.

  • PDF

Characteristics of Mono Crystalline Silicon Solar Cell for Rear Electrode with Aluminum and Aluminum-Boron (Aluminum 및 Aluminum-Boron후면 전극에 따른 단결정 실리콘 태양전지 특성)

  • Hong, Ji-Hwa;Baek, Tae-Hyeon;Kim, Jin-Kuk;Choi, Sung-Jin;Kim, Nam-Soo;Kang, Gi-Hwan;Yu, Gwon-Jong;Song, Hee-Eun
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.34-39
    • /
    • 2011
  • Screen printing method is a common way to fabricate the crystalline silicon solar cell with low-cost and high-efficiency. The screen printing metallization use silver paste and aluminum paste for front and rear contact, respectively. Especially the rear contact between aluminum and silicon is important to form the back surface filed (Al-BSF) after firing process. BSF plays an important role to reduces the surface recombination due to $p^+$ doping of back surface. However, Al electrode on back surface leads to bow occurring by differences in coefficient of thermal expansion of the aluminum and silicon. In this paper, we studied the properties of mono crystalline silicon solar cell for rear electrode with aluminum and aluminum-boron in order to characterize bow and BSF of each paste. The 156*156 $m^2$ p-type silicon wafers with $200{\mu}m$ thickness and 0.5-3 ${\Omega}\;cm$ resistivity were used after texturing, diffusion, and antireflection coating. The characteristics of solar cells was obtained by measuring vernier callipers, scanning electron microscope and light current-voltage. Solar cells with aluminum paste on the back surface were achieved with $V_{OC}$ = 0.618V, JSC = 35.49$mA/cm^2$, FF(Fill factor) = 78%, Efficiency = 17.13%.

  • PDF

Prediction and Assessment on Consolidation Settlement for Soft Ground by Hydraulic Fill (준설매립 연약지반에 대한 압밀침하 예측 및 평가)

  • Jeon, Je-Sung;Koo, Ja-Kap;Oh, Jeong-Tae
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.9
    • /
    • pp.33-40
    • /
    • 2008
  • This paper describes the performance of ground improvement project using prefabricated vertical drains of condition, in which approximately 10m dredged fill overlies original soft foundation layer in the coastal area composed of soft marine clay with high water content and high compressibility. From field monitoring results, excessive ground settlement compared with predicted settlement in design stage developed during the following one year. In order to predict the final consolidation behavior, recalculation of consolidation settlements and back analysis using observed settlements were conducted. Field monitoring results of surface settlements were evaluated, and then corrected because large shear deformation occurred by construction events in the early stages of consolidation. To predict the consolidation behavior, material functions and in-situ conditions from laboratory consolidation test were re-analyzed. Using these results, height of additional embankment is estimated to satisfy residual settlement limit and maintain an adequate ground elevation. The recalculated time-settlement curve has been compared with field monitoring results after additional surcharge was applied. It might be used for verification of recalculated results.

A Study on Self-Hardening Characteristics of Coal Ash by Mixing Ratio of Fly Ash and Bottom Ash (비회와 저회의 배합비에 따른 석탄회의 자경성에 관한 연구)

  • Shin, Woonggi;Lim, Daesung;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.6
    • /
    • pp.85-91
    • /
    • 2010
  • As enormous construction projects of land development are carried out around Korea, useful construction materials are needed to perform the construction projects. However, there are no more enough of fill and reclamation materials in our country. That is why the coal ash is expected to be utilized as an alternative material. Since the coal ash has the characteristics of a pozzolan and a selfhardening material, it is adjudged that coal ash has a great possibility to be used as a fill and reclamation material. In this study, grain size analysis, Atterberg limit test, and specific gravity test were performed to examine the physical characteristics of the coal ash about a self-hardening material before utilizing the coal ash in the construction. Compaction test, unconfined compression test, direct shear test, and flexible wall permeability test were conducted to investigate the engineering characteristics according to mixture ratios of fly ash and bottom ash. As a result of the tests, it was confirmed that the mixing ratio 1:1 of fly ash and bottom ash is the most effective to use as a fill and reclamation material. If the mixture of coal ash is used as a backfill material with light weight around structure, it is expected to play a significant role in reducing earth pressure on the back of the structure. As the age of the mixture of coal ash goes by, it intends to decrease the coefficient of permeability. As described above, the coal ash should be considered as an alternative material of fill and reclamation materials since the result of the tests indicates that the coal ash is suitable to a useful material on the construction design.

Effect of geometrical parameters of reentry capsule over flowfield at high speed flow

  • Mehta, R.C.
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.4
    • /
    • pp.487-501
    • /
    • 2017
  • The main purpose of the paper is to analyze effect of geometrical parameters of the reentry capsules such as radius of the spherical cap, shoulder radius, back shell inclination angle and overall length on the flow field characteristics. The numerical simulation with viscous flow past ARD (Atmospheric Reentry Demonstrator), Soyuz (Russian) and OREX (Orbital Reentry EXperimental) reentry capsules for freestream Mach numbers range of 2.0-5.0 is carried out by solving time-dependent, axisymmetric, compressible laminar Navier-Stokes equations. These reentry capsules appear as bell, head light and saucer in shape. The flow field features around the reentry capsules such as bow shock wave, sonic line, expansion fan and recirculating flow region are well captured by the present numerical simulations. A low pressure is observed immediately downstream of the base region of the capsule which can be attributed to fill-up in the growing space between the shock wave and the reentry module. The back shell angle and the radius of the shoulder over the capsule are having a significant effect on the wall pressure distribution. The effects of geometrical parameters of the reentry capsules will useful input for the calculation of ballistic coefficient of the reentry module.

Experimental study on modified low liquid limit silt for abutment backfill in bridge-embankment transition section

  • Shu-jian Wang;Yong Sun;Zhen-bao Li;Kai Xiao;Wei Cui
    • Geomechanics and Engineering
    • /
    • v.32 no.6
    • /
    • pp.601-613
    • /
    • 2023
  • Low liquid limit silt, widely distributed in the middle and down reaches of Yellow River, has the disadvantages of poor grading, less clay content and poor colloidal activity. It is very easy to cause vehicle jumping at the bridge-embankment transition section when the low liquid limit silt used as the backfill at the abutment back. In this paper, a series of laboratory tests were carried out to study the physical and mechanical properties of the low liquid limit silt used as back filling. Ground granulated blast furnace slag (GGBFS) was excited by active MgO and hydrated lime to solidify silt as abutment backfill. The optimum ratio of firming agent and the compaction and mechanical properties of reinforced soil were revealed through compaction test and unconfined compressive strength (UCS) test. Scanning electron microscope (SEM) test was used to study the pore characteristics and hydration products of reinforced soil. 6% hydrated lime and alkali activated slag were used to solidify silt and fill the model of subgrade respectively. The pavement settlement regulation and soil internal stress-strain regulation of subgrade with different materials under uniformly distributed load were studied by model experiment. The effect of alkali activated slag curing agent on curing silt was verified. The research results can provide technical support for highway construction in silt area of the Yellow River alluvial plain.