• Title/Summary/Keyword: Back to back reinforced wall

Search Result 26, Processing Time 0.025 seconds

Numerical Analysis for Crack and Opening of Keystone Block Wall

  • Kim, Doo-Jun
    • Geotechnical Engineering
    • /
    • v.14 no.3
    • /
    • pp.109-122
    • /
    • 1998
  • In the design and construction of Keystone block reinforced wall with geogrid, previous on the behaviour of wall in curved area is required. This study is to investigate the structural stability of wall and problems during construction in curved area. Previous analyzing methods, usually used for straight area of wall, have been reviewed to find any problems in applying to stability analysis of curved area. Thus, the purpose of this study is to show how to analyse the straight area of Keystone block wall first, and then turn this to use for analyzing various significance, concerning the design or construction of curved high keystone block wall. and the stress behavior on retaining wall between straight and curved conditions by F.E.M, using the shell analysis theory.

  • PDF

Behavior Analysis of Block Type Wall Constructed for Maintaining the Slope Stability of Rural Structure (농촌건축물 사면 안정성 확보를 위한 블록식 옹벽의 거동분석)

  • Shin, Bangwoong;Oh, Sewook;Kwon, Youngcheul
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.2 no.2
    • /
    • pp.115-126
    • /
    • 2000
  • Retaining walls are used to prevent excessive movement of retained soils. Typical retaining walls include gravity, reinforced concrete, reinforced earth and tie-back. However, from a practical viewpoint there are still drawbacks among these often constructed retaining walls. New types of retaining walls constructed with precast concrete blocks are proposed. This type of retaining wall is incorporates each blocks interconnected with adjacent block by connecting unit to build up a flexible retaining-wall system. This paper focus to behavior characteristics includes deformation and distribution of lateral earth pressure by loading tests and FEM analysis. For model tests, a 1/10 scale reduce models are manufactured include unevenness part, drainage hole and connecting unit and steel wire used to connect each blocks with adjacent block. To simulate the real retaining walls closely, uneven parts are interconnected each other and the construction type of blocks and wall front inclination are varied to investigate the relative displacement of individual block and the location of maximum deformation of wall as increasing surcharging. Additionally, PENTAGON3D, which solve the geotechnical and other problem, used for verifying and comparing with model tests.

  • PDF

Numerical study on the rate-dependent behavior of geogrid reinforced sand retaining walls

  • Li, Fulin;Ma, Tianran;Yang, Yugui
    • Geomechanics and Engineering
    • /
    • v.25 no.3
    • /
    • pp.195-205
    • /
    • 2021
  • Time effect on the deformation and strength characteristics of geogrid reinforced sand retaining wall has become an important issue in geotechnical and transportation engineering. Three physical model tests on geogrid reinforced sand retaining walls performed under various loading conditions were simulated to study their rate-dependent behaviors, using the presented nonlinear finite element method (FEM) analysis procedure. This FEM was based on the dynamic relaxation method and return mapping scheme, in which the combined effects of the rate-dependent behaviors of both the backfill soil and the geosynthetic reinforcement have been included. The rate-dependent behaviors of sands and geogrids should be attributed to the viscous property of materials, which can be described by the unified three-component elasto-viscoplastic constitutive model. By comparing the FEM simulations and the test results, it can be found that the present FEM was able to be successfully extended to the boundary value problems of geosynthetic reinforced soil retaining walls. The deformation and strength characteristics of the geogrid reinforced sand retaining walls can be well reproduced. Loading rate effect, the trends of jump in footing pressure upon the step-changes in the loading rate, occurred not only on sands and geogrids but also on geogrid reinforced sands retaining walls. The lateral earth pressure distributions against the back of retaining wall, the local tensile force in the geogrid arranged in the retaining wall and the local stresses beneath the footing under various loading conditions can also be predicted well in the FEM simulations.

Insights from LDPM analysis on retaining wall failure

  • Gili Lifshitz Sherzer;Amichai Mitelman;Marina Grigorovitch
    • Computers and Concrete
    • /
    • v.33 no.5
    • /
    • pp.545-557
    • /
    • 2024
  • A real-case incident occurred where a 9-meter-high segment of a pre-fabricated concrete separation wall unexpectedly collapsed. This collapse was triggered by improperly depositing excavated soil against the wall's back, a condition for which the wall segments were not designed to withstand lateral earth pressure, leading to a flexural failure. The event's analysis, integrating technical data and observational insights, revealed that internal forces at the time of failure significantly exceeded the wall's capacity per standard design. The Lattice Discrete Particle Model (LDPM) further replicates the collapse mechanism. Our approach involved defining various parameter sets to replicate the concrete's mechanical response, consistent with the tested compressive strength. Subsequent stages included calibrating these parameters across different scales and conducting full-scale simulations. These simulations carried out with various parameter sets, were thoroughly analyzed to identify the most representative failure mechanism. We developed an equation from this analysis that quickly correlates the parameters to the wall's load-carry capacity, aligned with the simulation. Additionally, our study examined the wall's post-peak behavior, extending up to the point of collapse. This aspect of the analysis was essential for preventing failure, providing crucial time for intervention, and potentially averting a disaster. However, the reinforced concrete residual state is far from being fully understood. While it's impractical for engineers to depend on the residual state of structural elements during the design phase, comprehending this state is essential for effective response and mitigation strategies after initial failure occurs.

Comparison of numerical and analytical solutions for reinforced soil wall shaking table tests

  • Zarnani, Saman;El-Emam, Magdi M.;Bathurst, Richard J.
    • Geomechanics and Engineering
    • /
    • v.3 no.4
    • /
    • pp.291-321
    • /
    • 2011
  • The paper describes a simple numerical FLAC model that was developed to simulate the dynamic response of two instrumented reduced-scale model reinforced soil walls constructed on a 1-g shaking table. The models were 1 m high by 1.4 m wide by 2.4 m long and were constructed with a uniform size sand backfill, a polymeric geogrid reinforcement material with appropriately scaled stiffness, and a structural full-height rigid panel facing. The wall toe was constructed to simulate a perfectly hinged toe (i.e. toe allowed to rotate only) in one model and an idealized sliding toe (i.e. toe allowed to rotate and slide horizontally) in the other. Physical and numerical models were subjected to the same stepped amplitude sinusoidal base acceleration record. The material properties of the component materials (e.g. backfill and reinforcement) were determined from independent laboratory testing (reinforcement) and by back-fitting results of a numerical FLAC model for direct shear box testing to the corresponding physical test results. A simple elastic-plastic model with Mohr-Coulomb failure criterion for the sand was judged to give satisfactory agreement with measured wall results. The numerical results are also compared to closed-form solutions for reinforcement loads. In most cases predicted and closed-form solutions fall within the accuracy of measured loads based on ${\pm}1$ standard deviation applied to physical measurements. The paper summarizes important lessons learned and implications to the seismic design and performance of geosynthetic reinforced soil walls.

Seismic Response Characterization of Shear Wall in Auxiliary Building of Nuclear Power Plant (지진에 의한 원전 보조건물 전단벽의동적 응답 특성 추정)

  • Rahman, Md Motiur;Nahar, Tahmina Tasnim;Baek, Geonhwi;Kim, Dookie
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.3
    • /
    • pp.93-102
    • /
    • 2021
  • The dynamic characterization of a three-story auxiliary building in a nuclear power plant (NPP) constructed with a monolithic reinforced concrete shear wall is investigated in this study. The shear wall is subjected to a joint-research, round-robin analysis organized by the Korea Atomic Energy Research Institute, South Korea, to predict seismic responses of that auxiliary building in NPP through a shake table test. Five different intensity measures of the base excitation are applied to the shaking table test to get the acceleration responses from the different building locations for one horizontal direction (front-back). Simultaneously to understand the global damage scenario of the structure, a frequency search test is conducted after each excitation. The primary motivation of this study is to develop a nonlinear numerical model considering the multi-layered shell element and compare it with the test result to validate through the modal parameter identification and floor responses. In addition, the acceleration amplification factor is evaluated to judge the dynamic behavior of the shear wall with the existing standard, thus providing theoretical support for engineering practice.

Physical protection system vulnerability assessment of a small nuclear research reactor due to TNT-shaped charge impact on its reinforced concrete wall

  • Moo, Jee Hoon;Chirayath, Sunil S.;Cho, Sung Gook
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.2135-2146
    • /
    • 2022
  • A nuclear energy facility is one of the most critical facilities to be safely protected during and after operation because the physical destruction of its barriers by an external attack could release radioactivity into the environment and can cause harmful effects. The barrier walls of nuclear energy facilities should be sufficiently robust to protect essential facilities from external attack or sabotage. Physical protection system (PPS) vulnerability assessment of a typical small nuclear research reactor was carried out by simulating an external attack with a tri-nitro toluene (TNT) shaped charge and results are presented. The reinforced concrete (RC) barrier wall of the research reactor located at a distance of 50 m from a TNT-shaped charge was the target of external attack. For the purpose of the impact assessment of the RC barrier wall, a finite element method (FEM) is utilized to simulate the destruction condition. The study results showed that a hole-size of diameter 342 mm at the front side and 364 mm at the back side was created on the RC barrier wall as a result of a 143.35 kg TNT-shaped charge. This aperture would be large enough to let at least one person can pass through at a time. For the purpose of the PPS vulnerability assessment, an Estimate of Adversary Sequence Interruption (EASI) model was used, which enabled the determination of most vulnerable path to the target with a probability of interruption equal to 0.43. The study showed that the RC barrier wall is vulnerable to a TNT-shaped charge impact, which could in turn reduce the effectiveness of the PPS.

Effects of Foundation Stiffness and Surface Loading on the Behavior of Soil-reinforced Segmental Retaining Walls (기초의 강성과 상재하중이 보강토 옹벽의 거동에 미치는 영향)

  • Yoo, Chung-Sik
    • Journal of the Korean Geosynthetics Society
    • /
    • v.2 no.2
    • /
    • pp.13-24
    • /
    • 2003
  • This paper presents the results of investigation on the effects of foundation stiffness and surface loading on the performance of soil-reinforced segmental retaining walls using the finite element method of analysis. A parametric study was performed by varying the foundation stiffness and the location of surface loading. The results of the analyses indicate that the wall deformation and reinforcement tensile load tend to increase with decreasing foundation stiffness with little variation in the horizontal and vertical stress distributions at the back and the base of the reinforced soil zone. Also revealed is that the increment of reinforcement tensile load due to the presence of surface load may be significantly over-estimated when using the conventional approach. Furthermore, the external stability should be carefully examined when a surface loading is present just behind the reinforced soil zone. The implications of the findings from this study to current design approaches are discussed in detail.

  • PDF

Model Test of Stabilizing Measures for Ground Failure Due to Soft Ground Excavation (연약지반 굴착에 따른 지반파괴 억지대책 실내모형 실험)

  • Kim, Jae-Hong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.3
    • /
    • pp.907-917
    • /
    • 2014
  • When conducting excavations after burying the soft ground, even if the retaining walls are installed, failure often occurs within backfill. In order to minimize the occurrences of failures, model test was performed after the installation of stabilizing piles to investigate the stabilizing effects. The model chamber is set up with clay foundation reinforced with and without stabilizing piles. During the excavation of clay foundation, the subsidence, pore water pressure, and soil pressure along the excavation were measured. As a result of the model test, the increase of excavation levels and the reduction of subsidence of back ground were observed with the stabilizing piles, compared to those without the stabilizing piles. The installation of stabilizing piles does not influence the pore water pressure change, but induces less subsidence rate. In addition, the depth of excavation has a significant effect on the back ground and it was evaluated that the maximum subsidence occurs as it is closer to the excavation point.

Evaluation of Pile Spacing Ratio of Stabilizing Piles for Ground Destruction Reduction at the Time of Soft Ground Excavation (연약지반 굴착시 지반파괴 저감을 위한 억지말뚝의 간격비 평가)

  • Kim, Jae-Hong
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.7
    • /
    • pp.47-56
    • /
    • 2016
  • In the case of excavating ground backfilled with soft ground, ground destruction occurs owing to the discharge of groundwater from excavated back ground in spite of earth retaining wall. To minimize this, indoor model test was implemented applying stabilizing pile as a solution for ground destruction. The unreinforced case was compared with the reinforced case and the comparison demonstrated that the ratio of the gap in settlement of the two cases is about three to one, which proves the reinforcement effect (Kim, 2014). This study has carried out the evaluation of appropriate pile spacing ratio, according to the confirmed effect of stabilizing pile. In the evaluation test the case with pile spacing ratio of 0.66 (5 stabilizing piles) was compared with that of 0.76 (3 stabilizing piles), and it has been shown that applying stabilizing pile has effect on ground destruction reduction, but may rather work as load when pile spacing ratio is narrower than a certain interval. So it was found that adjustment for appropriate pile spacing ratio is required at the stage of design. This study has shown that the pile spacing ratio is appropriate at around 0.7~0.8, which reduces ground destruction and does not function as the load of excavated back ground.