• Title/Summary/Keyword: Back propagation rule

Search Result 95, Processing Time 0.029 seconds

A Study on Stochastic Wave Propagation Model to Generate Various Uninterrupted Traffic Flows (다양한 연속 교통류 구현을 위한 확률파장전파모형의 개발)

  • Chang, Hyun-Ho;Baek, Seung-Kirl;Park, Jae-Beom
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.4 s.75
    • /
    • pp.147-158
    • /
    • 2004
  • A class of SWP(Stochastic Wane Propagation) models microscopically mimics individual vehicles' stochastic behavior and traffic jam propagation with simplified car-following models based on CA(Cellular Automata) theory and macroscopically captures dynamic traffic flow relationships based on statistical physics. SWP model, a program-oriented model using both discrete time-space and integer data structure, can simulate a huge road network with high-speed computing time. However, the model has shortcomings to both the capturing of low speed within a jam microscopically and that of the density and back propagation speed of traffic congestion macroscopically because of the generation of spontaneous jam through unrealistic collision avoidance. In this paper, two additional rules are integrated into the NaSch model. The one is SMR(Stopping Maneuver Rule) to mimic vehicles' stopping process more realistically in the tail of traffic jams. the other is LAR(Low Acceleration Rule) for the explanation of low speed characteristics within traffic jams. Therefore, the CA car-following model with the two rules prevents the lockup condition within a heavily traffic density capturing both the stopping maneuver behavior in the tail of traffic jam and the low acceleration behavior within jam microscopically, and generates more various macroscopic traffic flow mechanism than NaSch model's with the explanation of propagation speed and density of traffic jam.

A rule base derivation method using neural networks for the fuzzy logic control of robot manipulators (로봇 매니퓰레이터의 퍼지논리 제어를 위한 신경회로망을 사용한 규칙 베이스 유도방법)

  • 이석원;경계현;김대원;이범희;고명삼
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.441-446
    • /
    • 1992
  • We propose a control architecture for the fuzzy logic control of robot manipulators and a rule base derivation method for a fuzzy logic controller(FLC) using a neural network. The control architecture is composed of FLC and PD(positional Derivative) controller. And a neural network is designed in consideration of the FLC's structure. After the training is finished by BP(Back Propagation) and FEL(Feedback Error Learning) method, the rule base is derived from the neural network and is reduced through two stages - smoothing, logical reduction. Also, we show the performance of the control architecture through the simulation to verify the effectiveness of our proposed method.

  • PDF

A Study on the Implementation of Modified Hybrid Learning Rule (변형하이브리드 학습규칙의 구현에 관한 연구)

  • 송도선;김석동;이행세
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.12
    • /
    • pp.116-123
    • /
    • 1994
  • A modified Hybrid learning rule(MHLR) is proposed, which is derived from combining the Back Propagation algorithm that is known as an excellent classifier with modified Hebbian by changing the orginal Hebbian which is a good feature extractor. The network architecture of MHLR is multi-layered neural network. The weights of MHLR are calculated from sum of the weight of BP and the weight of modified Hebbian between input layer and higgen layer and from the weight of BP between gidden layer and output layer. To evaluate the performance, BP, MHLR and the proposed Hybrid learning rule (HLR) are simulated by Monte Carlo method. As the result, MHLR is the best in recognition rate and HLR is the second. In learning speed, HLR and MHLR are much the same, while BP is relatively slow.

  • PDF

신경회로망에 의한 로보트의 역 기구학 구현

  • 이경식;남광희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.144-148
    • /
    • 1989
  • We solve the inverse kinematics problems in robotics by employing a neural network. In the practical situation. it is not easy to obtain the exact inverse kinematics solution, since there are many unforeseen errors such as the shift of a robot base the link's bending, et c. Hence difficulties follow in the trajectory planning. With the neural network, it is possible to train the robot motion so that the robot follows the desired trajectory without errors even under the situation where the unexpected errors are involved. In this work, Back-Propagation rule is used as a learning method.

  • PDF

Path control for a mobile robot using neural network (신경 회로 이론을 이용한 이동 로보트의 경로 제어에 관한 연구)

  • 신철균;조형석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.710-715
    • /
    • 1990
  • This paper presents a path control method for mobile robot using neural network and a systematic method for the kinematic and dynamic modelling of a mobile robot. The robot finds its path deviation by taking the signals of an optical array sensor and determined its moving behaviors using neural net control method. A robot can be taught behaviors by changing the given patterns, in this work, Back Propagation rule is used as a learning method.

  • PDF

Stereopsis with cellular neural networks (국소적인 연결을 갖는 신경회로망을 이용한 스테레오 정합)

  • 박성진;채수익
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.12
    • /
    • pp.124-131
    • /
    • 1994
  • In this paper, we propose a new approach of solving the stereopsis problem with a discrete-time cellular neural network(DTCNN) where each node has connections only with its local neithbors. Because the matching process of stereo correspondence depends on its geometrically local characteristics, the DTCNN is suitable for the stereo correspondence. Moreover, it can be easily implemented in VLSI. Therefore, we employed a two-layer DTCNN with dual templates, which are determined with the back propagation learning rule. Based on evaluation of the proposed approach for several random-dot stereograms, its performance is better than that of the Marr-Poggio algorithm.

  • PDF

Structure Optimization of Neural Networks using Rough Set Theory (러프셋 이론을 이용한 신경망의 구조 최적화)

  • 정영준;이동욱;심귀보
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.03a
    • /
    • pp.49-52
    • /
    • 1998
  • Neural Network has good performance in pattern classification, control and many other fields by learning ability. However, there is effective rule or systematic approach to determine optimal structure. In this paper, we propose a new method to find optimal structure of feed-forward multi-layer neural network as a kind of pruning method. That eliminating redundant elements of neural network. To find redundant elements we analysis error and weight changing with Rough Set Theory, in condition of executing back-propagation leaning algorithm.

  • PDF

Neuro-Fuzzy System and Its Application by Input Space Partition Methods (입력 공간 분할에 따른 뉴로-퍼지 시스템과 응용)

  • 곽근창;유정웅
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.433-439
    • /
    • 1998
  • In this paper, we present an approach to the structure identification based on the input space partition methods and to the parameter identification by hybrid learning method in neuro-fuzzy system. The structure identification can automatically estimate the number of membership function and fuzzy rule using grid partition, tree partition, scatter partition from numerical input-output data. And then the parameter identification is carried out by the hybrid learning scheme using back-propagation and least squares estimate. Finally, we sill show its usefulness for neuro-fuzzy modeling to truck backer-upper control.

  • PDF

Automatic Generation of Fuzzy Rules using the Fuzzy-Neural Networks

  • Ahn, Taechon;Oh, Sungkwun;Woo, Kwangbang
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1181-1186
    • /
    • 1993
  • In the paper, a new design method of rule-based fuzzy modeling is proposed for model identification of nonlinear systems. The structure indentification is carried out, utilizing fuzzy c-means clustering. Fuzzy-neural networks composed back-propagation algorithm and linear fuzzy inference method, are used to identify parameters of the premise and consequence parts. To obtain optimal linguistic fuzzy implication rules, the learning rates and momentum coefficients are tuned automatically using a modified complex method.

  • PDF

Development of Estimation Model for Hysteresis of Friction Using Artificial Intelligent (인공 지능 알고리즘을 이용한 마찰의 히스테리시스 예측 모델 개발)

  • Choi, Jeong-Ju
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.7
    • /
    • pp.2913-2918
    • /
    • 2011
  • This paper proposed the friction model using Preisach algorithm with neural network based on experimental results. In order to apply the neural network algorithm, the back propagation update rule was used and the updated weighting factor of neural network was applied to distribute function of Preisach model. In order to implement the proposed algorithm, the LabView software was used to apply to the precision control of mechanical system. The evaluation of the proposed friction model was executed through experiments.