• Title/Summary/Keyword: Back contact solar cell

Search Result 81, Processing Time 0.03 seconds

Bow Reduction in Thin Crystalline Silicon Solar Cell with Control of Rear Aluminum Layer Thickness (박형 결정질 실리콘 태양전지에서의 휨현상 감소를 위한 알루미늄층 두께 조절)

  • Baek, Tae-Hyeon;Hong, Ji-Hwa;Lim, Kee-Joe;Kang, Gi-Hwan;Yu, Gwon-Jong;Song, Hee-Eun
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.108-112
    • /
    • 2012
  • Crystalline silicon solar cell remains the major player in the photovoltaic marketplace with 90 % of the market, despite the development of a variety of thin film technologies. Silicon's excellent efficiency, stability, material abundance and low toxicity have helped to maintain its position of dominance. However, the cost of silicon photovoltaic remains a major barrier to reducing the cost of silicon photovoltaics. Using the crystalline silicon wafer with thinner thickness is the promising way for cost and material reduction in the solar cell production. However, the thinner thickness of silicon wafer is, the worse bow phenomenon is induced. The bow phenomenon is observed when two or more layers of materials of different temperature expansion coefficiencies are in contact, in this case silicon and aluminum. In this paper, the solar cells were fabricated with different thicknesses of Al layer in order to reduce the bow phenomenon. With lower paste applications, we observed that the bow could be reduced by up to 40% of the largest value with 130 micron thickness of the wafer even though the conversion efficiency decrease of 0.5 % occurred. Since the bowed wafers lead to unacceptable yield losses during the module construction, the reduction of bow is indispensable on thin crystalline silicon solar cell. In this work, we have studied on the counterbalance between the bow and conversion efficiency and also suggest the formation of enough back surface field (BSF) with thinner Al paste application.

  • PDF

ONO Back Surface Passivation and Laser Fired Contact for c-Si Solar Cells

  • Kim, Sang-Seop;Lee, Jun-Gi;Choe, Byeong-Deok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.402-402
    • /
    • 2011
  • 본 연구에서는 결정질 태양전지 제작에 있어 재료비 절감과 기존의 Screen Printing 공정 기술에서의 단점을 보완하기 위한 방안으로 후면 passivation 구조와 레이저를 이용한 국부적 후면 전극 형성(Laser Fired Contact) 방법에 대한 실험을 진행하였다. 후면 passivation 층으로 SiO2/ SiNx/SiO2 삼중막 구조와 SiNx 단일막 구조를 형성시킨 후 anneal 온도에 따른 소수캐리어의 lifetime 변화를 비교하였다. LFC 형성은 2 ${\mu}m$ 두께의 Al이 증착된 기판 후면에 1,064 nm 파장의 레이저를 통해 diameter와 dot pitch 등의 파라미터를 가변 하여 실시하였다. 실험 결과 800$^{\circ}C$의 고온 열처리 후 ONO 삼중막에서의 lifetime 향상이 우세하여 SiNx 단일 막 보다 열적 안정성이 우수함을 확인하였다. LFC 결과 diameter가 40, 50, 60 ${\mu}m$로 가변된 조건에서는 40 ${\mu}m$ 일 경우와 dot pitch가 200, 500, 1,000 ${\mu}m$로 가변된 조건에서는 1,000 ${\mu}m$일 경우 610 mV의 Voc 값을 보였다. 이는 레이저를 통해 국부적으로 Al-Si 간 alloy를 형성시킴으로써 접촉 면적이 최소화됨에 따라 후면에서의 캐리어의 재결합속도를 감소시키고, passivation 효과를 극대화시키기 때문이다.

  • PDF

실리콘 태양전지의 후면 점접촉 구조를 위한 Al 확산에 의한 국부 후면전계의 제조

  • Lee, Jun-Seong;Gwon, Sun-U;Song, Cheong-Ho;Park, Seong-Eun;Park, Ha-Yeong;Song, Ju-Yong;Park, Hyo-Min;Yun, Se-Wang;Kim, Dong-Hwan
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.54.2-54.2
    • /
    • 2009
  • 결정질 실리콘 태양전지의 알루미늄 후면전극이 패시베이션층의 공극을 통하여 확산됨으로써 국부 후면전계(local back surface field)가 형성되는 후면 점접촉 구조를 제조하였으며, 이에 대한 공정조건 및 특성을 연구하였다. 후면 패시베이션층은 실리콘 기판과 금속전극사이에 삽입됨으로써 표면 재결합속도를 낮추고, 후면 반사도를 높여 광흡수 경로를 증가시킬 수 있다. 고가의 사진식각기술 대신에 저가의 단순한 공정인 레이저 식각기술을 사용하여 후면 패시베이션층에 균일하고 잘 정렬된 공극 패턴을 형성할 수 있었다. 레이저 식각 조건 및 소성조건에 따른 Al 확산 국부 후면전계의 단면 형상을 주사전자현미경(SEM)을 사용하여 관찰하였으며 이에 대한 전기적, 광학적 특성 변화를 조사하였다.

  • PDF

Characterization of Non-vacuum CuInSe2 Solar Cells Deposited on Bilayer Molybdenum (이중층 몰리브데늄을 후면전극으로 적용한 비진공법 CuInSe2 태양전지의 특성)

  • Hwang, Ji Sub;Yun, Hee-Sun;Jang, Yoon Hee;Lee, Jang mi;Lee, Doh-Kwon
    • Current Photovoltaic Research
    • /
    • v.8 no.2
    • /
    • pp.45-49
    • /
    • 2020
  • Molybdenum (Mo) thin films are widely used as back contact in copper indium diselenide (CISe) solar cells. However, despite this, there are only few published studies on the properties of Mo and characteristics of CISe solar cells formed on such Mo substrates. In this studies, we investigated the properties of sputter deposited Mo bilayer, and fabricated non-vacuum CISe solar cells using bilayer Mo substrates. The changes in surface morphology and electrical resistivity were traced by varying the gas pressure during deposition of the bottom Mo layer. In porous surface structure, it was confirmed that the electrical resistivity of Mo bilayer was increased as the amount of oxygen bonded to the Mo atoms increased. The resulting solar cell characteristics vary as the bottom Mo layer deposition pressure, and the maximum solar cell efficiency was achieved when the bottom layer was deposited at 7 mTorr with a thickness of 100 nm and the top layer deposited at 3 mTorr with a thickness of 400 nm.

Laser patterning process for a-Si:H single junction module fabrication (레이저 가공에 의한 비정질 실리콘 박막 태양전지 모듈 제조)

  • Lee, Hae-Seok;Eo, Young-Joo;Lee, Heon-Min;Lee, Don-Hee
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.281-284
    • /
    • 2007
  • Recently, we have developed p-i-n a-Si:H single junction thin film solar cells with RF (13.56MHz) plasma enhanced chemical vapor deposition (PECVD) system, and also successfully fabricated the mini modules ($>300cm^2$), using the laser patterning technique to form an integrated series connection. The efficiency of a mini module was 7.4% ($Area=305cm^2$, Isc=0.25A, Voc=14.74V, FF=62%). To fabricate large area modules, it is important to optimise the integrated series connection, without damaging the cell. We have newly installed the laser patterning equipment that consists of two different lasers, $SHG-YVO_4$ (${\lambda}=0.532{\mu}m$) and YAG (${\lambda}=1.064{\mu}m$). The mini-modules are formed through several scribed lines such as pattern-l (front TCO), pattern-2 (PV layers) and pattern-3 (BR/back contact). However, in the case of pattern-3, a high-energy part of laser shot damaged the textured surface of the front TCO, so that the resistance between the each cells decreases due to an incomplete isolation. In this study, the re-deposition of SnOx from the front TCO, Zn (BR layer) and Al (back contact) on the sidewalls of pattern-3 scribed lines was observed. Moreover, re-crystallization of a-Si:H layers due to thermal damage by laser patterning was evaluated. These cause an increase of a leakage current, result in a low efficiency of module. To optimize a-Si:H single junction thin film modules, a laser beam profile was changed, and its effect on isolation of scribed lines is discussed in this paper.

  • PDF

Effects of Laser Doping on Selective Emitter Si Solar Cells (레이져를 이용한 도핑 특성과 선택적 도핑 에미터 실리콘 태양전지의 제작)

  • Park, Sungeun;Park, Hyomin;Nam, Junggyu;Yang, JungYup;Lee, Dongho;Min, Byoung Koun;Kim, Kyung Nam;Park, Se Jin;Lee, Hae-Seok;Kim, Donghwan;Kang, Yoonmook;Kim, Dongseop
    • Current Photovoltaic Research
    • /
    • v.4 no.2
    • /
    • pp.54-58
    • /
    • 2016
  • Laser-doped selective emitter process requires dopant source deposition, spin-on-glass, and is able to form selective emitter through SiNx layer by laser irradiation on desired locations. However, after laser doping process, the remaining dopant layer needs to be washed out. Laser-induced melting of pre-deposited impurity doping is a precise selective doping method minimizing addition of process steps. In this study, we introduce a novel scheme for fabricating highly efficient selective emitter solar cell by laser doping. During this process, laser induced damage induces front contact destabilization due to the hindrance of silver nucleation even though laser doping has a potential of commercialization with simple process concept. When the laser induced damage is effectively removed using solution etch back process, the disadvantage of laser doping was effectively removed. The devices fabricated using laser doping scheme power conversion efficiency was significantly improved about 1% abs. after removal the laser damages.

Properties of CIGS thin film developed with evaporation system (진공증발원 시스템을 이용한 CIGS 박막의 특성평가에 관한 연구)

  • Kim, Eundo;Jeong, Ye-Sul;Jung, Da Woon;Eom, Gi Seog;Hwang, Do Weon;Cho, Seong Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.85.1-85.1
    • /
    • 2010
  • $Cu(In,Ga)Se_2$ (CIGS) thin film solar cell is currently 19.5% higher efficiency and developing a large area technology. The structure of CIGS solar cell that make five unit layers as back contact, light absorption, buffer, front transparent conducting electrode and antireflection to make them sequentially forming. Materials and various compositions of thin film unit which also manufacture a variety method used by the physical and chemical method for CIGS solar cell. The construction and performance test of evaporator for CIGS thin film solar cell has been done. The vapor pressures were changed by using vapor flux meter. The vapor pressure were copper (Cu) $2.1{\times}10^{-7}{\sim}3.0{\times}10^{-7}$ Torr, indium (In) $8.0{\times}10^{-7}{\sim}9.0{\times}10^{-7}$ Torr, gallium (Ga) $1.4{\times}10^{-7}{\sim}2.8{\times}10^{-7}$ Torr, and selenium (Se) $2.1{\times}10^{-6}{\sim}3.2{\times}10^{-6}$ Torr, respectively. The characteristics of the CIGS thin film was investigated by using X-ray diffraction (XRD), scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS) and photoluminescence (PL) spectroscopy using a He-Ne laser. In PL spectrum, temperature dependencies of PL spectra were measured at 1137 nm wavelength.

  • PDF

A Study on Blister Formation and Electrical Characteristics with Varied Annealing Condition of P-doped Amorphous Silicon

  • Choe, Seong-Jin;Kim, Ga-Hyeon;Gang, Min-Gu;Lee, Jeong-In;Kim, Dong-Hwan;Song, Hui-Eun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.346.2-346.2
    • /
    • 2016
  • The rear side contact recombination in the crystalline silicon solar cell could be reduced by back surface field. We formed polycrystalline silicon as a back surface field through crystallization of amorphous silicon. A thin silicon oxide applied to the passivation layer. We used quasi-steady-state photoconductance measurement to analyze electrical properties with various annealing condition. And, blister formed on surface of wafer during the annealing process. We observed the blister after varied annealing process with wafer of various surface. Shape and density of blister is influenced by various annealing temperature and process time. As the annealing temperature became higher, the average diameter of blister is decreased and total number of blister is increased. The sample with the $600^{\circ}C$ annealing temperature and 1 min annealing time exhibited the highest implied open circuit voltage and lifetime. We predicted that the various shape and density of blister affects the lifetime and implied open circuit voltage.

  • PDF

A Study on the CIGS cells with Na-doped Mo back contact (Na이 첨가된 Mo 전극을 이용한 CIGS 박막 태양전지 연구)

  • Yun, Jae-Ho;Kim, Ki-Hwan;Kim, Min-Sik;Ahn, Byung-Tae;Ahn, Se-Jin;Lee, Jeong-Chul;Yoon, Kyung-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.218-221
    • /
    • 2006
  • The photovoltaic properties of CIES cells on alumina substrate were improved by using the Na-doped Mo as theabotom layer of hilo back contact. Na was supplied to the CIGS bulk region from alumina/Na-doped Mo/Mo/alumina? structure, as same assimilar to the Na diffusion from soda-lime glass. The content diffusion of Na from Na-doped bfo was smaller more controlled than that from SLG. These Our results indicate that Na-doped bfo act as Na source material and contents of Na amount can be controlled without the use of an alkali barrier layer. The best CIGS solar cell with conversion efficiency of 13.34%, $J_{sc}=34.62mA/cm^2,\;V_{oc}=0.58V$ and FF=66% for an active area of $0.45cm^2$ on the alumina substrate was obtained in the condition of for 100nm Na-doped Mo/1000nm Mo.

  • PDF

Secondary Phase and Defects in Cu2ZnSnSe4 Solar Cells with Decreasing Absorber Layer Thickness

  • Kim, Young-Ill;Son, Dae-Ho;Lee, Jaebaek;Sung, Shi-Joon;Kang, Jin-Kyu;Kim, Dae-Hwan;Yang, Kee-Jeong
    • Current Photovoltaic Research
    • /
    • v.9 no.3
    • /
    • pp.84-95
    • /
    • 2021
  • The power conversion efficiency of Cu2ZnSnSe4 (CZTSe) solar cells depends on the absorber layer thickness; however, changes in the characteristics of the cells with varying absorber layer thickness are unclear. In this study, we investigated the changes in the characteristics of CZTSe solar cells for varying absorber layer thickness. Five absorber thicknesses were employed: CZTSe1 2.78 ㎛, CZTSe2 1.01 ㎛, CZTSe3 0.55 ㎛, CZTSe4 0.29 ㎛, and CZTSe5 0.15-0.23 ㎛. The efficiency of the CZTSe solar cells decreased as the absorber thickness decreased, resulting in power conversion efficiencies of 10.45% (CZTSe1), 8.67% (CZTSe2), 7.14% (CZTSe3), 3.44% (CZTSe4), and 1.54% (CZTSe5). As the thickness of the CZTSe absorber layer decreased, the electron-hole recombination at the grain boundaries and the absorber-back-contact interface increased. This caused an increase in the current loss, owing to light loss in the long-wavelength region. In addition, as the thickness of the CZTSe absorber layer decreased, more ZnSe was produced, and the resulting defects and defect clusters led to an open-circuit voltage loss.