Acknowledgement
This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) (No. 20173010012980), by the Technology Development Program to Solve Climate Changes of the National Research Foundation (NRF) funded by the Ministry of Science and ICT (2016M1A2A2936781), and by the DGIST R&D Programs of the Ministry of Science, ICT & Future Planning of Korea (21-ET-08).
References
- C. Wadia, A. P. Alivisatos, D. M. Kammen, "Materials availability expands the opportunity for large-scale photovoltaics deployment," Environ. Sci. Technol., Vol. 45, pp. 2072-2077 (2009). https://doi.org/10.1021/es102635d
- D. -H. Son, S. -H. Kim, S. -Y. Kim, Y. -I. Kim, J. -H. Sim, S. -N. Park, D. -H. Jeon, D. -K. Hwang, S. -J. Sung, J. -K. Kang, K. -J. Yang, D. -H. Kim, "Effect of solid-H2S gas reactions on CZTSSe thin film growth and photovoltaic properties of a 12.62% efficiency device," J. Mater. Chem. A, Vol. 7, pp. 25279-25289 (2019). https://doi.org/10.1039/C9TA08310C
- W. Wang, M. T. Winkler, O. Gunawan, T. Gokmen, T. K. Todorov, Y. Zhu, D. B. Mitzi, "Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency," Adv. Energy Mater., Vol. 4, 1301465 (2014). https://doi.org/10.1002/aenm.201301465
- K. -J. Yang, D. -H. Son, S. -J. Sung, J. -H. Sim, Y. -I. Kim, S. -N. Park, D. -H. Jeon, J. Kim, D. -K. Hwang, C. -W. Jeon, D. Nam, H. Cheong, J. -K. Kang, D. -H. Kim, "A band-gap-graded CZTSSe solar cell with 12.3% efficiency," J. Mater. Chem. A, Vol. 4, pp. 10151-10158 (2016). https://doi.org/10.1039/C6TA01558A
- Y. S. Lee, T. Gershon, O. Gunawan, T. K. Todorov, T. Gokmen, Y. Virgus, S. Guha, "Cu2ZnSnSe4 thin-film solar cells by thermal coevaporation with 11.6% efficiency and improved minority carrier diffusion length," Adv. Energy Mater., Vol. 5, 1401372 (2015). https://doi.org/10.1002/aenm.201401372
- K. -J. Yang, S. Kim, S. -Y. Kim, K. Ahn, D. -H. Son, S. -H. Kim, S. -J. Lee, Y. -I. Kim, S. -N. Park, S. -J. Sung, D. -H. Kim, T. Enkhbat, J. Kim, C. -W. Jeon. J. -K. Kang, "Flexible Cu2ZnSn(S,Se)4 solar cells with over 10% efficiency and methods of enlarging the cell area," Nat. Comm., Vol. 10, 2959 (2019). https://doi.org/10.1038/s41467-019-10890-x
- F. Liu, J. Huang, K. Sun, C. Yan, Y. Shen, J. Park, A. Pu, F. Zhou, X. Liu, J. A. Stride, M. A. Green, X. Hao, "Beyond 8% ultrathin kesterite Cu2ZnSnS4 solar cells by interface reaction route controlling and self-organized nanopattern at the back contact," NPG Asia Mater., Vol. 9, e401 (2017). https://doi.org/10.1038/am.2017.103
- B. Shin, O. Gunawan, Y. Zhu, N. A. Bojarczuk, S. J. Chey, S. Guha, "Thin film solar cell with 8.4% power conversion efficiency using an earth-abundant Cu2ZnSnS4 absorber," Prog. Photovolt.: Res. Appl., Vol. 21, pp. 72-76 (2013). https://doi.org/10.1002/pip.1174
- K. -J. Yang, J. -H. Sim, D. -H. Son, D. -H. Kim, G. Y. Kim, W. Jo, S. Song, J. Kim, D. Nam, H. Cheong, J. -K. Kang, "Effects of the compositional ratio distribution with sulfurization temperatures in the absorber layer on the defect and surface electrical characteristics of Cu2ZnSnS4 solar cells," Prog. Photovolt.: Res. Appl., Vol. 23, pp. 1771-1784 (2015). https://doi.org/10.1002/pip.2619
- A. Cazzaniga, A. Crovetto, C. Yan, K. Sun, X. Hao, J. R. Estelrich, S. Canulescu, E. Stamate, N. Pryds, O. Hansen, J. Schou, "Ultra-thin Cu2ZnSnS4 solar cell by pulsed laser deposition," Sol. Energy Mater. Sol. Cells, Vol. 166, pp. 91-99 (2017). https://doi.org/10.1016/j.solmat.2017.03.002
- Y. Hou, H. Azimi, N. Gasparini, M. Salvador, W. Chen, L. S. Khanzada, M. Brandl, R. Hock, C. J. Brabec, "Low-temperature solution-processed kesterite solar cell based on in situ deposition of ultrathin absorber layer," ACS Appl. Mater. Interfaces, Vol. 7, pp. 21100-21106 (2015). https://doi.org/10.1021/acsami.5b04468
- P. Jackson, R. Wuerz, D. Hariskos, E. Lotter, W. Witte, M. Powalla, "Effects of heavy alkali elements in Cu(In,Ga)Se2 solar cells with efficiencies up to 22.6%," Phys. Status Solidi RRL, Vol. 10, pp. 583-586 (2016). https://doi.org/10.1002/pssr.201600199
- S. Yang, J. Zhu, X. Zhang, X. Ma, H. Luo, L. Yin, X. Xiao, "Bandgap optimization of submicron-thick Cu(In,Ga)Se2 solar cells," Prog. Photovolt.: Res. Appl., Vol. 23, pp. 1157-1163 (2015). https://doi.org/10.1002/pip.2543
- B. Vermang, J. T. Watjen, V. Fjallstrom, F. Rostvall, M. Edoff, R. Kotipalli, F. Henry, D. Flandre, "Employing Si solar cell technology to increase efficiency of ultra-thin Cu(In,Ga)Se2 solar cells," Prog. Photovolt.: Res. Appl., Vol. 22, pp. 1023-1029 (2014). https://doi.org/10.1002/pip.2527
- C. v. Lare, G. Yin, A. Polman, M. Schmid, "Light coupling and trapping in ultrathin Cu(In,Ga)Se2 solar cells using dielectric scattering patterns," ACS Nano, Vol. 9, pp. 9603-9613 (2015). https://doi.org/10.1021/acsnano.5b04091
- J. Malmstrom, S. Schleussner, L. Stolt, "Enhanced back reflectance and quantum efficiency in Cu(In,Ga)Se2 thin film solar cells with a ZrN back reflector," Appl. Phys. Lett., Vol. 85, pp. 2634-2636 (2004). https://doi.org/10.1063/1.1794860
- A. Campa, J. Krc, J. Malmstrom, M. Edoff, F. Smole, M. Topic, "The potential of textured front ZnO and flat TCO/metal back contact to improve optical absorption in thin Cu(In,Ga)Se2 solar cells," Thin Solid Films, Vol. 515, pp. 5968-5972 (2007). https://doi.org/10.1016/j.tsf.2006.12.093
- T. Hara, T. Maekawa, S. Minoura, Y. Sago, S. Niki, H. Fujiwara, "Quantitative assessment of optical gain and loss in submicron-textured CuIn1-xGaxSe2 solar cells fabricated by three-stage coevaporation," Phys. Rev. Applied, Vol. 2, 034012 (2014). https://doi.org/10.1103/PhysRevApplied.2.034012
- J. K. Larsen, H. Simchi, P. Xin, K. Kim, W. N. Shafarman, "Backwall superstrate configuration for ultrathin Cu(In,Ga)Se2 solar cells," Appl. Phys. Lett., Vol. 104, 033901 (2014). https://doi.org/10.1063/1.4862651
- M. Gloeckler, J. R. Sites, "Potential of submicrometer thickness solar cells," J. Appl. Phys., Vol. 98, 103703 (2005). https://doi.org/10.1063/1.2128054
- U. Rau, "Tunneling-enhanced recombination in Cu(In,Ga)Se2 heterojunction solar cells," Appl. Phys. Lett., Vol. 74, pp. 111-113 (1999). https://doi.org/10.1063/1.122967
- G. Yin, V. Brackmann, V. Hoffmann, M. Schmid, "Enhanced performance of ultra-thin Cu(In,Ga)Se2 solar cells deposited at low process temperature," Sol. Energy Mater. Sol. Cells, Vol. 132, pp. 142-147 (2015). https://doi.org/10.1016/j.solmat.2014.08.045
- B. Vermang, V. Fjallstrom, J. Pettersson, P. Salome, M. Edoff, "Development of rear surface passivated Cu(In,Ga)Se2 thin film solar cells with nano-sized local rear point contacts," Sol. Energy Mater. Sol. Cells, Vol. 117, pp. 505-511 (2013). https://doi.org/10.1016/j.solmat.2013.07.025
- M. Troviano, K. Taretto, "Analysis of internal quantum efficiency in double-graded bandgap solar cells including sub-bandgap absorption," Sol. Energy Mater. Sol. Cells, Vol. 95, pp. 821-828 (2011). https://doi.org/10.1016/j.solmat.2010.10.028
-
J. Song, S. S. Li, C. H. Huang, O. D. Crisalle, T. J. Anderson, "Device modeling and simulation of the performance of Cu(In1-x,Gax)Se
2 solar cells," Solid-State Electron., Vol. 48, pp. 73-79 (2004). https://doi.org/10.1016/S0038-1101(03)00289-2 - S. Niki, M. Contreras, I. Repins, M. Powalla, K. Kushiya, S. Ishizuka, K. Matsubara, "CIGS absorbers and processes," Prog. Photovolt.: Res. Appl., Vol. 18, pp. 453-466 (2010). https://doi.org/10.1002/pip.969
- K. Kushiya, M. Ohshita, I. Hara, Y. Tanaka, B. Sang, Y. Nagoya, M. Tachiyuki, O. Yamase, "Yield issues on the fabrication of 30 cm x 30 cm sized Cu(In,Ga)Se2-based thinfilm modules," Sol. Energy Mater. Sol. Cells, Vol. 75, pp. 171-178 (2003). https://doi.org/10.1016/S0927-0248(02)00144-7
- J. Pettersson, T. Torndahl, C. Platzer-Bjorkman, A. Hultqvist, M. Edoff, "The influence of absorber thickness on Cu(In,Ga)Se2 solar cells with different buffer layers," IEEE J. Photovoltaics, Vol. 3, pp. 1376-1382 (2013). https://doi.org/10.1109/JPHOTOV.2013.2276030
- M. Powalla, B. Dimmler, "Scaling up issues of CIGS solar cells," Thin Solid Films, Vol. 361-362, pp. 540-546 (2000). https://doi.org/10.1016/S0040-6090(99)00849-4
- M. T. Winkler, W. Wang, O. Gunawan, H. J. Hovel, T. K. Todorov, D. B. Mitzi, "Optical designs that improve the efficiency of Cu2ZnSn(S,Se)4 solar cells," Energy Environ. Sci., Vol. 7, pp. 1029-1036 (2014). https://doi.org/10.1039/C3EE42541J
- Y. Ren, J. J. S. Scragg, C. Frisk, J. K. Larsen, S. -Y. Li, C. Platzer-Bjorkman, "Influence of the Cu2ZnSnS4 absorber thickness on thin film solar cells," Phys. Status Solidi A, Vol. 212, pp. 2889-2896 (2015). https://doi.org/10.1002/pssa.201532311
- K. -J. Yang, J. -H. Sim, D. -H. Son, Y. -I. Kim, D. -H. Kim, D. Nam, H. Cheong, S. Kim, J. Kim, J. -K. Kang, "Precursor designs for Cu2ZnSn(S,Se)4 thin-film solar cells," Nano Energy, Vol. 35, pp. 52-61 (2017). https://doi.org/10.1016/j.nanoen.2017.03.025
- C. J. Hages, N. J. Carter, R. Agrawal, T. Unold, "Generalized current-voltage analysis and efficiency limitations in non-ideal solar cells: Case of Cu2ZnSn(SxSe1-x)4 and Cu2Zn(SnyGe1-y) (SxSe1-x)4," J. Appl. Phys., Vol. 115, 234504 (2014). https://doi.org/10.1063/1.4882119
- H. S. Duan, W. Yang, B. Bob, C. J. Hsu, B. Lei, Y. Yang, "The role of sulfur in solution-processed Cu2ZnSn(S,Se)4 and its effect on defect properties," Adv. Funct. Mater., Vol. 23, pp. 1466-1471 (2013). https://doi.org/10.1002/adfm.201201732
- J. J. Scragg, "Copper zinc tin sulfide thin films for photovoltaics" (Springer, New York, 2011).
- J. Kim, G. Y. Kim, D. -H. Son, K. -J. Yang, D. -H. Kim, J. -K. Kang, W. Jo, "High photo-conversion efficiency Cu2ZnSn(S,Se)4 thin-film solar cells prepared by compound-precursors and metalprecursors," Sol. Energy Mater. Sol. Cells, Vol. 183, pp. 129-136 (2018). https://doi.org/10.1016/j.solmat.2018.03.050
- B. D. Anderson, J. B. Tracy, "Nanoparticle conversion chemistry: Kirkendall effect, galvanic exchange, and anion exchange," Nanoscale, Vol. 6, pp. 12195-12216 (2014). https://doi.org/10.1039/C4NR02025A
- K. -J. Yang, S. Kim, J. -H. Sim, D. -H. Son, D. -H. Kim, J. Kim, W. Jo, H. Yoo, J. Kim, J. -K. Kang, "The alterations of carrier separation in kesterite solar cells," Nano Energy, Vol. 52, pp. 38-53 (2018). https://doi.org/10.1016/j.nanoen.2018.07.039
- J. J. Scragg, J. T. Watjen, M. Edoff, T. Ericson, T. Kubart, C. Platzer-Bjorkman, "A detrimental reaction at the molybdenum back contact in Cu2ZnSn(S,Se)4 thin-film solar cells," J. Am. Chem. Soc., Vol. 134, pp. 19330-19333 (2012). https://doi.org/10.1021/ja308862n
- J. T. Watjen, J. J. Scragg, T. Ericson, M. Edoff, C. PlatzerBjorkman, "Secondary compound formation revealed by transmission electron microscopy at the Cu2ZnSnS4/Mo interface," Thin Solid Films, Vol. 535, pp. 31-34 (2013). https://doi.org/10.1016/j.tsf.2012.11.079
- S. -Y. Kim, D. -H. Son, Y. -I. Kim, S. -H. Kim, S. Kim, K. Ahn, S. -J. Sung, D. -K. Hwang, K. -J. Yang, J. -K. Kang, D. -H. Kim, "Void and secondary phase formation mechanisms of CZTSSe using Sn/Cu/Zn/Mo stacked elemental precursors," Nano Energy, Vol. 59, pp. 399-411 (2019). https://doi.org/10.1016/j.nanoen.2019.02.063
- S. -Y. Kim, S. -H. Kim, S. Hong, D. -H. Son, Y. -I. Kim, S. Kim, K. Ahn, K. -J. Yang, D. -H. Kim, J. -K. Kang, "Secondary phase formation mechanism in the Mo-back contact region during sulfo-selenization using a metal precursor: effect of wettability between a liquid metal and substrate on secondary phase formation," ACS Appl. Mater. Interfaces, Vol. 11, pp. 23160-23167 (2019). https://doi.org/10.1021/acsami.9b03969
- S. Chen, A. Walsh, X. G. Gong, S. H. Wei, "Classification of lattice defects in the kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 earth-abundant solar cell absorbers," Adv. Mater., Vol. 25, pp. 1522-1539 (2013). https://doi.org/10.1002/adma.201203146
- B. Shin, N. A. Bojarczuk, S. Guha, "On the kinetics of MoSe2 interfacial layer formation in chalcogen-based thin film solar cells with a molybdenum back contact," Appl. Phys. Lett., Vol. 102, 091907 (2013). https://doi.org/10.1063/1.4794422
- J. J. Scragg, P. J. Dale, D. Colombara, L. M. Peter, "Thermodynamic aspects of the synthesis of thin-film materials for solar cells," ChemPhysChem, Vol. 13, pp. 3035-3046 (2012). https://doi.org/10.1002/cphc.201200067