• 제목/요약/키워드: Back Propagation

검색결과 1,469건 처리시간 0.029초

신경회로망을 이용한 폭발성 가스 인식 시스템 (An explosive gas recognition system using neural networks)

  • 반상우;조준기;이민호;이대식;정호용;허증수;이덕동
    • 센서학회지
    • /
    • 제8권6호
    • /
    • pp.461-468
    • /
    • 1999
  • 다중 센서 어레이와 신경회로망을 이용하여 메탄, 프로판, 부탄 등의 폭발성 가스의 종류 및 농도를 실시간으로 분석하고, 인식하여 결과를 실시간으로 출력할 수 있는 가스 인식 시스템을 구현하였다. 정유 공장이나 도시가스 배관 등에 비교적 많이 분포하는 폭발성 가스인 메탄, 프로판, 부탄 등의 가스들을 분류하고, 그 농도를 인식할 수 있는 시스템의 구현을 위해, 우선 9개의 후막형 반도체식 가스 센서로 구성된 가스 센서 어레이로부터 얻어지는 다차원 신호를 Principal Component Analysis(PCA)를 이용하여 그 특성을 분석하였다. 분석 결과를 바탕으로 오차역전파 학습 알고리즘을 갖는 다층 구조 신경회로망을 이용하여 가스 종류 및 농도를 정확하게 인식할 수 있는 가스 인식 시스템을 구현하였으며, 실시간 처리 시스템을 위해 TMS320C31 DSP 보드를 이용하여 가스인식 시스템을 구현하였다.

  • PDF

NNPI 제어기를 이용한 IPMSM 드라이브의 속도 제어 (Speed Control of IPMSM Drive using NNPI Controller)

  • 정동화;최정식;고재섭
    • 조명전기설비학회논문지
    • /
    • 제20권7호
    • /
    • pp.65-73
    • /
    • 2006
  • 본 논문은 신경회로망을 이용한 IPMSM 드라이브의 속도제어를 제시한다. 일반적으로 수치 제어된 기계에서 PI 제어기는 고정된 이득값으로 처리한다. PI 제어기의 고정된 이득값은 어떤 동작조건에서는 양호하게 수행된다. 고정된 이득값을 가진 PI 제어기의 강인성 향상을 위하여 신경회로망을 기초로 하는 새로운 제어 방법인 NNPI 제어기를 제시한다. NNPI 제어기는 속도, 부하토크 및 관성과 같은 파리미터 변동에 대하여 오버슈트를 감소시키고 상승 시간 및 정상상태에 빠르게 도달한다. 또한 본 논문에서는 신경회로망을 사용하여 IPMSM의 속도를 제어하고 ANN 제어기를 사용하여 속도를 추정한다. 신경회로망의 역전파 알고리즘 방법은 전동기의 속도를 실시간으로 추정하는데 사용된다. IPMSM의 속도제어기 결과는 제시된 이득값 조절의 타당성을 입증한다. 그리고 NNPI 제어기는 광범위한 동작상태와 부하 외란에 대하여 고정된 이득값보다 우수한 성능을 가진다.

인공신경망을 이용한 터널시공 시 계측결과 분석에 관한 연구 (A Study on Instrumentation Results Analysis Using Artificial Neural Network in Tunnel Area)

  • 이종휘;이동근;변요셉;천병식
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 추계 학술발표회 2차
    • /
    • pp.21-31
    • /
    • 2010
  • Although it is important to reflect the accurate information of the ground condition in the tunnel design, the analysis and design are conducted by limited information because it is very difficult to get it practically on considering various geography and geotechnical condition. So construction management of information concept is required to manage immediately on the field condition because it is very time-consuming to establish the countermeasure of underground reinforcement and the pattern change of Bo. Therefore, when construction is on tunnel area, examination of accurate safety and prediction of behavior is performed to overcomes the limit of predicting behavior by using Artificial Neural Network(ANN) in this study. Firstly, the field data was secured. Secondly, suitable structure was made on multi-layer perceptrons among the ANN. Thirdly, learning algorithm-propagated applies to ANN. The data for the learn of field application using ANN was used by considering impact factors, which influenced the behavior of tunnel, and performing credibility analysis. crown displacement, spring displacement, subsurfacement, and rock bolt axial force are predicted at the tunnel construction and on-site application was confirmed by using ANN from analyzing and comparing with measurement value of on-site. In this study, the data from Seoul Highway $\bigcirc\bigcirc$ tunnel section was applied to the ANN Theory, and the analysis on the investigate value and the reasoning for the value associated with field application was performed.

  • PDF

유전알고리즘을 이용한 신경망 구조 및 파라미터 최적화 (Neural Network Structure and Parameter Optimization via Genetic Algorithms)

  • 한승수
    • 한국지능시스템학회논문지
    • /
    • 제11권3호
    • /
    • pp.215-222
    • /
    • 2001
  • 신경망은 선형 시스템뿐만 아니라 비선형 시스템에 있어서도 탁월한 모델링 및 예측 성능을 갖고 있다. 하지만 좋은 성능을 갖는 신경망을 구현하기 위해서는 최적화 해야할 파라미터들이 있다. 은닉층의 뉴런의 수, 학습율, 모멘텀, 학습오차 등이 그것인데 이러한 파라미터들은 경험에 의해서, 또는 문헌들에서 제시하는 값들을 선택하여 사용하는 것이 일반적인 경향이다. 하지만 신경망의 전체적인 성능은 이러한 파라미터들의 값에 의해서 결정되기 때문에 이 값들의 선택은 보다 체계적인 방법을 사용하여 구하여야 한다. 본 논문은 유전 알고리즘을 이용하여 이러한 신경망 파라미터들의 최적 값을 찾는데 목적이 있다. 유전 알고리즘을 이용하여 찾은 파라미터들을 사용하여 학습된 신경망의 학습오차와 예측오차들을 심플렉스 알고리즘을 이용하여 찾는 파라미터들을 사용하여 학습된 신경망의 오차들과 비교하여 본 결과 유전 알고리즘을 이용하여 찾을 파라미터들을 이용했을 때의 신경망의 성능이 더욱 우수함을 알 수 있다.

  • PDF

신경회로망을 이용한 가전기기 전기 사용량 모니터링 및 예측 (Monitoring and Prediction of Appliances Electricity Usage Using Neural Network)

  • 정경권;최우승
    • 한국컴퓨터정보학회논문지
    • /
    • 제16권8호
    • /
    • pp.137-146
    • /
    • 2011
  • 에너지 소모에 대한 증가되는 소비자의 관심을 지원하기 위하여 가전기기의 에너지 모니터링과 예측 방식을 제안한다. 제안한 시스템은 0.5초마다 전류 센서를 지나가는 전류량을 측정하는 스마트 플러그라는 일반 전기 콘센트로 설계하고, 신경회로망의 훈련과 시험 데이터를 얻기 위해 평균기온, 최저기온, 초고기온, 습도, 일조시간의 날씨 정보를 입력 데이터로 사용하고, 스마트 플러그를 통한 전기 사용량을 목표값으로 사용하였다. 훈련을 위한 실험데이터를 사용하여 역전파 알고리즘을 기반으로 한 신경회로망을 구성하였다. 입력과 출력 데이터의 비선형 매핑을 위해 다층신경회로망을 사용하였다. 제안한 신경회로망 모델은 상관관계 계수가 0.9965로 우수하게 전기 사용량을 예측할 수 있는 것을 확인하였으며, 예측의 평균 제곱 오차는 0.02033이다.

지하철 주변 지반진동의 전파경로가 진동레벨 감쇠에 미치는 영향 (The Effects of the Wave Propagation Path of Ground Vibration Induced by the Subway Train on the Reduction of Vibration Level)

  • 신한철;조선규;양신추;이종민
    • 한국철도학회논문집
    • /
    • 제12권5호
    • /
    • pp.631-640
    • /
    • 2009
  • 본 논문에서는 수치해석적인 기법을 이용하여 지하철 주변 지반의 진동레벨 감쇠에 대한 연구를 수행하였다. 해석 결과 터널이 토사지반에 있을 경우 지반진동에 가장 큰 영향을 미치는 요소는 지반의 물성치로 나타났고, 암반에 있을 경우 가장 큰 영향을 미치는 것은 암반의 물성치로 나타났다. 또한, 진동원과의 연직면에서 떨어져 있는 각도를 기준으로 영향범위를 산정한 결과, 대부분의 해석 결과에서 연직면에서 $30^{\circ}$ 이내에 있을 경우 진동레벨의 감쇠 현상은 크지 않은 것으로 판단되었고, $40^{\circ}$ 이상이 되면 진동레벨은 급격히 감소하는 경향이 있는 것으로 나타났다.

TMCP강의 용접 공정별 입열량에 따른 용접부 물성 평가 및 비교 (Evaluation and Comparison of Weldabilities with Various Welding Processes on TMCP Steels)

  • 최철영;지창욱;김형찬;남대근;김정돈;김순국;박영도
    • Journal of Welding and Joining
    • /
    • 제32권1호
    • /
    • pp.6-14
    • /
    • 2014
  • This paper has an aim to evaluate microstructure and fracture toughness of TMCP steel weldment applied for off-shore wind tower with the focus on the effect of heat input on the weldment with various welding processes; FCAW(13kJ/cm and 30kJ/cm), SAW(62kJ/cm), and EGW(177kJ/cm). Based on experimental results developed from this study, it was found that the impact toughness of top side for TMCP steel weldments with heat input up to 62 kJ/cm satisfied the required minimum value except the EGW(177kJ/cm). The heat input and microstructure are the main factors of impact toughness. The heat input of 13kJ/cm on back side with low heat input increased the amount of grain boundary ferrite which has low impact toughness, and heat input of 177kJ/cm on top side is significant enough to produce the austenite grain growth. The compositions and sizes of inclusions which are the dominant factors for the formation of acicular ferrite were analyzed by OM and EDS. As the heat input increased, the inclusions also grew and a nucleation site decreased. The size of nonmetallic inclusions and the crack width was nearly similar, therefore the inclusions were related with the crack propagation.

인공 신경망(ANN)에 의한 하수처리장의 유입 유량 및 유입 성분 농도의 예측 (Prediction of Influent Flow Rate and Influent Components using Artificial Neural Network (ANN))

  • 문태섭;최재훈;김성희;차재환;염훈식;김창원
    • 한국물환경학회지
    • /
    • 제24권1호
    • /
    • pp.91-98
    • /
    • 2008
  • This work was performed to develop a model possible to predict the influent flow and influent components, which are one of main disturbances causing process problems at the operation of municipal wastewater treatment plant. In this study, artificial neural network (ANN) was used in order to develop a model that was able to predict the influent flow, $COD_{Mn}$, SS, TN 1 day-ahead, 2day-ahead and 3 day ahead. Multi-layer feed-forward back-propagation network was chosen as neural network type, and tanh-sigmoid function was used as activation function to transport signal at the neural network. And Levenberg-Marquart (LM) algorithm was used as learning algorithm to train neural network. Among 420 data sets except missing data, which were collected between 2005 and 2006 at field plant, 210 data sets were used for training, and other 210 data sets were used for validation. As result of it, ANN model for predicting the influent flow and components 1-3day ahead could be developed successfully. It is expected that this developed model can be practically used as follows: Detecting the fault related to effluent concentration that can be happened in the future by combining with other models to predict process performance in advance, and minimization of the process fault through the establishment of various control strategies based on the detection result.

신경망을 이용한 낙동강 유역 하도유출 예측 및 홍수예경보 이용 (Real-Time Forecasting of Flood Runoff Based on Neural Networks in Nakdong River Basin & Application to Flood Warning System)

  • 윤강훈;서봉철;신현석
    • 한국수자원학회논문집
    • /
    • 제37권2호
    • /
    • pp.145-154
    • /
    • 2004
  • 본 연구는 비선형성이 강한 강우-유출의 특성을 고려하여 홍수시 하도의 유출을 예측하고 하천유역의 홍수예경보에 이용하기 위하여 신경망 시스템의 모형화 가능성을 검증하였다. 신경망을 이용한 실시간 하도홍수 예측모형(Neural River Discharge-Stage Forecasting Mudel; NRDFM)은 낙동강 유역의 왜관 및 진동 지점의 홍수량 예측에 적용하였다. NRDFM에 의한 하도홍수량의 왜관 및 진동 지점 예측결과를 실측치와 비교$\cdot$검토한 결과 제시한 세 가지 모형 중 NRDFM-II의 예측성능이 가장 우수하였으며, NRDFM-I 및 NRDFM-II도 충분한 예측가능성을 보여주었다. 따라서, 본 연구에서 제시한 모형은 실시간 홍수예경보로의 적용이 가능하며, 이를 통하여 효율적으로 홍수를 통제 및 관리할 수 있을 것이다.

접촉식 센서 데이터를 이용한 지질 특성 추출 및 지질 분류 (Terrain Feature Extraction and Classification using Contact Sensor Data)

  • 박병곤;김자영;이지홍
    • 로봇학회논문지
    • /
    • 제7권3호
    • /
    • pp.171-181
    • /
    • 2012
  • Outdoor mobile robots are faced with various terrain types having different characteristics. To run safely and carry out the mission, mobile robot should recognize terrain types, physical and geometric characteristics and so on. It is essential to control appropriate motion for each terrain characteristics. One way to determine the terrain types is to use non-contact sensor data such as vision and laser sensor. Another way is to use contact sensor data such as slope of body, vibration and current of motor that are reaction data from the ground to the tire. In this paper, we presented experimental results on terrain classification using contact sensor data. We made a mobile robot for collecting contact sensor data and collected data from four terrains we chose for experimental terrains. Through analysis of the collecting data, we suggested a new method of terrain feature extraction considering physical characteristics and confirmed that the proposed method can classify the four terrains that we chose for experimental terrains. We can also be confirmed that terrain feature extraction method using Fast Fourier Transform (FFT) typically used in previous studies and the proposed method have similar classification performance through back propagation learning algorithm. However, both methods differ in the amount of data including terrain feature information. So we defined an index determined by the amount of terrain feature information and classification error rate. And the index can evaluate classification efficiency. We compared the results of each method through the index. The comparison showed that our method is more efficient than the existing method.