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Neural Network Structure and Parameter Optimization via Genetic
Algorithms
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Abstract

Neural network based models of semiconductor manufacturing processes have been shown to offer advantages in both
accuracy and generalization over traditional methods. However, model development is often complicated by the fact
that back-propagation neural networks contain several adjustable parameters whose optimal values unknown during
training. These include learning rate, momentum, iraining lolerance, and the number of hidden layer neurons. This
paper presents an investigation ol the use of genetic algorithms (GAs) to determine the optimal neural network
parameters for the modcling of plasma-enhanced chemical vapor deposition (PECVD) of silicon dioxide films. To find
an optimal parameter set for the neural network PECVD models, a performance index was defined and used in the
(A objective function. This index was designed to account for network prediction error as well as training error, with
a higher emphasis on reducing prediction error. The results of the genetic search were compared with the results of a
similar search using the simplex algorithm.
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1. Introduction

Accurate and efficient modeling of semiconductor
fabrication process 1s necessary for a variety of
integrated circuit manufacturing applications, including
process control, diagnosis, and vield enhancement.
Recently, neural networks have been successfully applied
to the modeling of semiconductor fabrication processes
such as plasma-enhanced chemical vapor deposition and
reactive ion etching [1-3]. Neural networks provide
distinctive features that are of potentially revolutionary
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importance for this application domain. These features
includer leaming and adaptation, a powerful nonlinear
modeling capability, a fine-grained massive parallelism
well suited for hardware implementation, and robustness
to noise. However, since newral network learning
algorithms use only a limited number of examples for a
given problem, it is not necessarily guaranteed that the
trained network gives correct answers for unknowrn
examples. This presents challenges in developing robust
neural process models which are able to generalize
beyond the range of their training data.

Multi-layered feed-forward neural networks consist of
an input layer, an output layer, and potentially several

Y=o X 20004 118 249 hidden layers. However, it has been proven theoretically
etz ol &l 2001 48 23¢ that a three-layer neural network with a sufficient
ZAre] 2 0 B dFe gXHEn Aus ARHERS number of hidden units can approximate any continuous
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function with an arbitrarily small error [4]. The number
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of hidden neurons must be large enough to form a
decision region of sufficienl complexity for a given
problem, but it is not clear how many hidden units is
optimal for maximum generalization. Aside from the
network architecture, there are also learning parameters
in back-propagation neural network training whose
optimal values are critical to the success of the learning
process hbut unknown prior to traiming. These include
such variahles as the leaming rate, momentum, and
lraining tolerance. In order to increase the benefits of the
neural network based process modeling strategy, a
systematic means of selecting an optimal network
structure and set of learning paramcters is an essential
Tequirermnent.

Several previous efforts at obtaining the optimal
neural network structure and parameters have been
described in the literaturc. Fogel derived a modified
version of Akaike's information criterion called the final
informalion statistic (FI$) to select the optimal neural
network structure [5]. Wada and Kawato proposed a
statistically hased information criterion which can be
used to find optimal number of hidden units to maximize
the generalization capability of 3-layer networks [6].
However, each of the aforementioned efforts at neural
network optimization have focused on improving network
performance in  binary classification and pattern
recognition tasks.

Kim and May investigated the effects of structural
and learning parameters on the performance of a neural
network designed to perform function approximation [7].
By using a statistically designed experiment, they varied
hidden layers, number of hidden ncurons per layer,
learning rate, momentum, inilial weight range, and
training tolerance. Optimal values for these variables
were detenmined using the Nelder-Mead simplex search
algorithm [8]. However, the simplex mecthod is
fundamentally dependent on its inmitial search point. With
an improper starting point, overall performance degrades
and this algorithms is likely to bhe trapped in local
optima.

In the 1970s, Holland introduced so-called "genetic”
algorithms (GAs) as an alternative search and
optimization procedure to traditional calcnlus based
"hill-climbing” methods [8]. GAs refer to a family of
computational models inspired by evolution. Theoretical
analyses suggest that they can quickly locate high
performance regions in extremely large and complex
search space and possess some nalural insensitivity to
noise. These attributes also make GAs a very attractive
techmique for determining optimal neuwral network
structire  and leaming parameters. Harp and Samad
developed a package called NeuroGENESYS to optimize
neural network structure for small scale pattern
recognition problems using the genetic approach, but
only compared their results to control studics using
random search [10]. Dodd also used genetic techiiques to
optimize neural networks [11].
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In this paper, we apply genetic algorithms to scarch
for the optimal neural network structure and learning
parameters in modeling the semiconductor Ffabrication
process of plasma enhanced chemical vapor deposition
(PECVD). The goal is to design an optimal neural
network for a specific semiconductor manufacturing
problem: modeling the PECVD of silicon dioxide films in
as a function of gas flow rates, temperature, pressure
and RF power. The responses modeled include film
permittivity, refractive index, residual stress, uniformity,
and impurity concentration. To obtain the necessary
training data for developing the optimal neural process
model, a fractional factorial experiment has been
performed to simultanecusly investigate the effect of the
number of hidden layer neurons, training tolerance,
learning rate and momentum [2]. The objective of the
experiment is to derive an optimal set of parameters for
a given set of performance metrics.

The network responses which are optimized are
learning capability and predictive capability, which are
quantified by a performance index which accounts for
the mean-squared error of the model. Optimal parameter
sets have been determined which minimize learning and
prediction error have been determined using genetic
search, and this lechnique is compared with the simplex
method. The genetic algorithm optimization procedure
significantly outperformed the simplex search, yielding
approximately 10% improvement in network training
error and 659 improvement in prediction error.

2_ Neural Process Modeling and
Experimental Design

2.1 PECVD Si02 Film Characterization

The silicon dioxide films were deposited in a
Plasma-Therm 700 series batch reactor using nitrous
oxide, 29 silane in nitrogen, and nitrogen as feed gases.
The deposition conditions, shown in Table 1, were varied
in a central composite circumscribed design [13]. The
central composite design employed consisted of a 25-1
fractional factorial augmented by ten axial points and
three center points.

Table 1. Deposition Parameters

Parameter Range
Substrate Temperature 200 - 400 T
Pressure 0.25 - 1.8 torr
RF Powcr 20 - 150 watt
2% SiH4 in N2 Flow 200 - 400 scom
N20 Range 400 - 900 scem

Approximately five microns of 3102 were deposited on
4" diameier (100) oriented silicon wafers. In addition to



the twenty-nine experiments which provided data to
train the neural process models, eight other experimental
runs were performed to lest the performance of the
models.

After deposition, a Metricon 2010 prism coupler was
used to delermine the thickness and index of refraction
of the films on the wafer. These were measured at five
points around the wafer to examine film uniformity. A
Flexus 2320 was used to measure the change in radius
of curvature of the bare silicon substrate due to the
stress induced by the grown silicon dioxide film. A
Perkin-Elmer 1600 FTIR was used to obtain the infrared
spectra, which were used to measure the impurity (H20
and SiOH) content of the films. Parallel-plate capacitors
were fabricated to evaluate film permittivity, and a
Keithley 590 CV analyzer and HP 4275 LCR meter were
used to measure the film capacitance.

22 Neural
Parameters

Network Structure and Learning

Neural networks possess the capability of learning
arbitrary nonlinear mappings between noisy sets of input
and output patterns. Neural network learning is designed
to determine an appropriate set of connection strengths
which allow many simple parallel processing units to
achieve a desired state of activation that mimics a given
set of sampled patterns. These rudimentarv processors
(called "nmeurons”) are interconmected in such a way that
knowledge is stored in the weight of the connections
between them. The activation level of a neuron is
determined by a nonlinear "activation function.” This
activation functlion endows the network with the ahility
to generalize with an added degree of freedom not
available in statistical regression techniques [1].

Qutput Layer

Hidden

T,
) (\:T{> (%D Input Layer

Network

Figure 1. Feed-Forward Neural Network

Neural networks uscd for semiconductor process
modeling are typically trained via the error
back-propagation (BP) algorithm. Figure 1 depicts the
general structure of a feed-forward, multi-layered neural
network. Individual newrons in the network receive,
process, and transmit critical information regarding the
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relationships between input and output pairs. The input
layer of neurons corresponds to the five adjustable input
parameters which are varied in the PECVD experiment.
The output layer corresponds Lo the deposition variables
to be modeled. The network also incorporates one
"hidden” layer of neurons which do not interact with the
external world, but assist In performing classification
and featiwre extraction on information provided by the
input and output lavers. Conceptually, the hidden layer
neurons can bhe viewed as representing fundamental, yet
not directly controllable plasma properties such as
electron temperature or reactive species concentration.

In BP training, model performance is influenced by
both the number of hidden layvers and the number of
newrons i1 each layer. It has been shown that a BP
network containing a single hidden layer can encode any
arbitrarily complex input-~output relationship [4]. In the
process of [inding the optimal network structure, the
number of layers is therefore fixed at three, and only the
number of neurons in the hidden layer is varied. IHidden
neurons provide an estimate of the number of "conflicts”
contained in the input/output mapping (where a conflict
refers to mappings which require incompatible weight
solutions) [13]. A large number of hidden neurons is
required to model complex relationships, hut too many
can result in an over—trained network and can render it
incapable of generalizing input/output relationships that
differ from the training samples [5].

The back-propagalion procedure uses a gradient
descent technique, which systematically changes the
network weights by an amount proportional to the partial
derivative of the accumulated error function, E, with
respect 10 the given welght. In other words, the change
in weight, Awgy, is given by:

2k (1)

-dwu'lz:_ awll
e

where 1 denotes a node in layer k, and j a node in the
preceding layer (k-1), and wijk the weight between
these two nodes. The kev to the back-propagation
procedure is that the above partial dervative can be
computed using the chain rule from the derivalive of the
system error with respect to actual output of the
network, the derivative of the output of each neuron
with respeet to its input, and finally the derivative of the
neural inputs with respect to the weights.

The constant 7 is called the learning rate, where 0<
7<1. The learning rate determines the speed of
convergence by regulating the step size. However, the
network may venture too far [rom the actual mininmum
value of the error surface or oscillations in the error
function may occur during training if h gets too large
[14]. On the other hand, smaller rates can cnsure the
stability of the network by diminishing the gradient of
noise in the weights, bul result in longer training time.

One improvement to the standard weight modification
technique that has been suggested is to expand Equation
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(1) by adding a momentum term:

oF
awu/e

Awy(n+1)=—7 + adwyzn) )]

where « is usually taken to be 0= ¢ <1, and n is the
number of times a pattern has been presented to the
network. The effects of the momentum term are to
magnify the leaming rate for flat regions of weight
space where the gradients are more or less constant, and
to prevent oscillations. This additional term, computed by
adding a fraction of the previous weight change, tends to
keep the weight changes going in the same direction.
Both the rate and the existence of network convergence
depend on the proper selection of the leaming rate and
of the momentum factor [7).

Aside from learning rate and momentum, another
critical learning parameter is network training tolerance.
Training tolerance determines the overall quality of the
network modeling capability by specifying the accuracy
of the neural outputs. A smaller training tolerance
usually increases learning accuracy, but can result in
less generalization capability as well as longer training
time. Conversely, a larger tolerance enhances
convergence speed at the expense of accuracy in
learning

3. Optimization of Network Parameters

3.1 Network Optimization Using the Simplex Method

For the PECVD process models, an effort was
undertaken to optimize each of the aforementioned BP
learming parameters, as well as the network structure
[2]. This was done to maximize the accuracy of each
model by minimizing its training and prediction error. In
all, four parameters are considered: number of hidden
neurons, learning rate, momentum, and training tolerance.
Initially, the neural PECVD models were obtained using
a default network structure and set of learning
parameters. These "rough” models were then refined by
varying the wvalues of the four critical network
parameters according to a 24 factorial design with three
center point replications. The experimental ranges of
each parameter and their default values are summarized
in Table 2.

Table 2. Ranges of Neural Network Parameters

Default
Paramcters Range Value
No. of Hidden Neurons 3-9 6
Leamning Rate 0.05 - 05 0.275
Momenturn 0.35 - 085 0.65
Training Tolerance 0.01 - 0.13 0.07

The results of the fractional factorial experiment werc
analyzed wusing the commercial statistical software
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package, RS/Discover [15]. RS/Discover used the dala
from the fractional factorial experiment to construct a
regression model  which  predicted the value of a
performance index for the neural network models as a
function of the four network parameters listed in Table
2. The performance index (PI) is given by:

PI=K,d*+ K;0, (3)

where ¢, is the RMS network training error and o, is

the RMS network prediction error. The constants K1 and
K2 are weights representing the relative importance of
each performance measure. Since the prediction error is
typically the more important quality characteristic, the
values chosen for these constants were K1 = 1, and K2
= 10.

Since the RS/Discover package employs the
Nelder-Mead simplex algorithm [16] for optimization,
this algorithm was used in [2] to minimize the PL A
regular simplex is defined as a set of (n+l) mutually
equidistant points in n dimensional space. The main idea
of the simplex method is to compare the values of the
function to be optimized at the (n+1) vertices of the
simplex and move the simplex towards the optimal point
iteratively. The original simplex method maintained =z
regular simplex at each stage. Nelder and Mead proposed
several modifications 1o the method which allow the
simplices to become non-regular. The result is a very
robust direct search method which is extremely powerful,
provided that the number of variables does not exceed
five or six. The result of mimmizing the network
performance index using the simplex method will be
compared to optimization using genetic algorithms, which
are described in greater detail below.

3.2 Genetic Optimization of Network Parameters

Genetic  Algorithms  (GAs) are guided stochastic
search techniques based on the mechanics of genetics
[O]. They use three genetic operations found in natural
genetics to guide their trek through the search space:
reproduction, crossover, and mutation [17-18]. Using
these operations, GAs are able (0 search through large,
irregularly shaped spaces quickly, requiring only
objective function value information (detailing the quality
of possible solutions) to guide the search. This is a
desirable characteristic, considering that the majority of
commonly used search techniques require derivative
information, continuity of the search space, or complete
lmowledge of the objective function to guide their search.
Furthermore, GAs take a more global view of the search
space than many methods cwrently encountered in
engineering optimization.

In computing terms, a genetic algorithm maps a
problem on to a sel of binary slrnngs, each string
representing a potential solution. The GA then
manipulates the most promising strings in searching for
improved solutions. A GA operates typically through a



simple cycle of four stages:

I Creation of a "population” of strings,

i) Evaluation of each string,

i)  Selection of "best” strings, and

iv)  Genetic manipulation, to create
population of strings.

the new

In each computational cycle, a new generation of
possible solutions for a given problem is produced. At
the first stage, an initial population of potential solutions
is created as a starting point for the search process.
Each element of the population is encoded into a string
(the "chromosome”), to be manipulated by the genetic
operators. In the next stage, the performance (or
"filness”) of each individual of the population is
evaluated with respect to the constraints imposed by the
problem, Based on each individual string’s [itness, a
selection mechanism chooses "“mates” for the genetic
mamipulation process. The selection policy is responsible
for assuring survival of the most “fit” individuals.

In coding for a genetic search, binary strings are
typically used, although alphanumeric strings can be
used as well. The method of coding multi-parameter
optimization problems used in this paper is concatenated,
multi--parameter, mapped and fixed-point coding [171. If
x € [0, 21] iz the parameter of interest (where 1 is the
length of the string), the decoded unsigned integer X can
be mapped linearly from [0, 2I] to a specified interval
[Umin, Umax]. To construct a multi-parameter coding,
as many single parameters as required can simply be
concatenated. Each coding may have its own sub-length
(Le.- its own Umin and Umax). Figure 2 shows an
example of a 2-parameler coding with four bits in each
parameter. The ranges of the first and second parameter
are 2-5 and 0-15, respectively.

1st parameter = 4.2
range [2, 5]

2nd parameter = 7
range [0, 15]

Figure 2. Multi-Parameter Coding

GA consists of three operations, namely reproduction,
crossover and mutation. Reproduction is the process by
which strings with high fitness wvalues (ie. - good
solutions  to  the  optimization problem  under
congideration) receive appropriately large numbers of
coples in the new population. The reproduction method
selecled for neural network optimization is elitisi roulette
wheel selection [18]. In this method, those strings with
large [itness values Fi arc assigned a proportionately
higher probability of survival into the next generation.
This probability distribution is determmined according to:

FHYnRFES 0|88 NFY Tx 2 Setole g

F,
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Thus, an individual string whose fitness is n times
better than another will produce n times the mumber of
offspring in the subsequent generation. Once the strings
have reproduced, they are stored in a "mating pool”
awaiting the actions of the crossover and mutation
operators,

JOENE
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Figure 3. The Crossover Operation
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The crossover operator takes two chromosomes and
interchanges part of their genetic information to produce
two new chromosomes (see Figure 3). After the
crossover point has been randomly chosen, portions of
the parent strings (P1 and P2) are swapped to produce
the new offspring (Ol and O2) based upon a specified
crossover probability. Mutation is motivated by the
possibility that the initially defined population might not
contain all of the information necessary to solve the
problem. This operation is implemented by randomly
changing a fixed number of bits every generation based
upon a specified mutation probability (see Figure 4).
Typical values for the probabilities of crossover and bit
mutation range from 0.6 to 095 and 0.001 to 0.01,
respectively. In this paper, the probabilities of crossover
and mutation were set to 0.6 and 0.01, respectively.

BRI

[l fefoffr]

Figure 4. The Mutation
Operation

Our overall neural network optimization scheme is
shown in Figure 5. Genetic algorithms generate possible
candidates for optimal neural parameters using an initial
population of 50 potential solutions as a starting point for
the search process. FEach element of the population is
encoded into a 10 bit string (the “chromosome”), to be
manipulated by the genetic operators. Since there are
four parameters to be optimized (number of hidden layer
newrons, momentum, learning rate, and training
tolerance), the concatenated total chromosome length is a
40 bit string.

The performance (or “fitness”) of each individual of
the population is evaluated with respect to the

219



HA ¥ XsA2EEE =X 2001, Vol. 11, No. 3

constraints imposed by the problem based on the fitness
function. To search for parameter values which
minimized both network training error and prediction
error, the performance index (PI) in Eguation (3) was
once again implemented. For genetic optimization of the
neural network models, the desired output is reflected by
the following fitness function (F):

Geneue

Algonthms,
Calculate

CITOrS

Synthesize
nelwork structure
and paramesery

Evaluate
FPland F

Tnstall new
neural network

Tramned
newral network

Testing
New, untrained
neueal network

% Traning Data Tgsr Data lﬁ

Figure 5. Block Diagram of Genetic Optimization

1 5)

F=977

Maximization of F continues until a final solution is
selected after 100 generations. If the opthimal solution is
not found after 100 generations, the solution with the
best fitness value is selected.

4. Results and Discussion

4.1 Network Optimization for Individual PECVD

Responses

Individual response mnetral network models were
trained to predict PECVD silicon dioxide permittivity,
refractive index, residual stress, and non-uniformity, and
impurity (H20 and SiOH) concentration. The result of
genetic optimization of these neural process models is
shown in Table 3. Analogous results for network
optimizalion using the simplex method are given in
Table 4.

Table 3. Network Parameters Optimized by (Genetic

Algorithms
PECVD Hidden | Momen- | Learning | Training

Response Neurons tum Rate Tolerance
Permittivity 7 0.41 0.19 0.01
Ref. Index 7 0.40 0.37 0.08
Stress 7 0.39 0.07 0.06

Non-

Uniforrity 4 043 0.06 011
Impurity _
Concentration 4 0.37 0.08 0.07
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Table 4. Network Parameters Optimized by Simplex

Search
PECVD Hidden | Momen- | Learning | Training

Response | Neurons lum Rate Tolerance
Permittivity 9 0.40 0.50 0.01
Rel. Index 9 0.40 0.50 0.01
Stress 6 0.40 0.05 0.13

Non-
Uniformity 6 0.40 0.50 0.13
fmpurity 6 0.40 0.05 0.07
Concentration

Examination of Tables 3 and 4 shows that the most
significant diffcrences between the two optimization
algorithms occur in the number of hidden ncurens and
leaming rates predicted Lo be optimal. Genetic search
generally leads lo fewer hidden neurons and smaller
learning rates. Momentumn and training tolerance values
are comparable for hoth methods.

Tables 5 and 6 compare the normalized traiming error
() and prediction error (o,) for the two search
methods, respectively, (In  each table, the 7%
improvement” column refers to the improvement obtained
by using genetic scarch). Although in two cases
involving training error minimization the simplex method
proved superior, the genctically optimized networks
exhibited vastly improved performance in nearly every
category for prediction error minimization. The overall
average improvement observed in  using genctic
optimization was 1.6% for network training error and
60.4% for prediction error. These observations indicate

Table 5. Training Error Comparison of Simplex and
GAs Network Optimization

PECVD | .. i _
Response Simplex GAs g¢Improvement
Permittivity 0.0573 0.0110 80.94
Refl. Index 0.0232 0.0822 -71.76
Stress 0.0500 0.0571 -12.47
Non-
Uniformity 0.1146 0.1099 4.09
Impurity 0.0951 0.0841 7.35
Concentration

Table 6. Prediction Error Comparison of Simplex and
GAs Network Optimization

RPe Egggge Simplex . GAs %Improverment
Permittivity 0.1788 0.0363 79.68
Rel. Index 0.2158 0.0681 72.61
Stress 0.9659 04815 50.16
Non- ~ ;
Uniformity 0.1361 0.0246 81.92
 Impurity 00064 | 0079 1754
(Concentration




that the search spaces provided by the neural PECVD
model parameters are generally multimodal, rather than
unimodal. The simplex method tends to become trapped
in Tocal optima in multimodal search spaces.

42 Network Oplimization for Multiple a PECVD
Response Model

The parameter sets called for in Tables 3 and 4 are
useful to obtain optimal performance for a single PECVD
response, but can provide subopilimal results for the
remaining responses. For example, Table 3 indicates that
seven hidden neurons are optimal for permittivity,
refractive index, and stress, but only [owr hidden neurons
are necessary for the non-uniformity and impurity
concentration models, Obviously, it is more desirable to
optimize network parameters for all responses
simultaneously. Therefore, a multiple ouiput ncural
process model (which includes permittivity, stress,
non—uniformity, H20 and SiOH) was trained with that
objective in mind.

Table 7 shows the optimized network parameters for
the multiple response PECVD model. Here, the optimal
parameter sets derived by genetic and simplex scarch
differ only slightly. ITowever, they differ noticeably [rom
the parameter sets optimized for individual PECVD
responses. This is especially true [or the number of
hidden neurons and the learning rates.

The seemingly slight diffcrences in optimal network
parameters  can  nevertheless  lead  to  significant
differences in nctwork performance. This is indicated in
Table 8, which shows the {raining and prediction errors
for the neural network models trained using the
parameter scts in Table 7. Clearly, the genelic scarch
vields superior results in both training and prediction. If
the improvements in performance for the mulliple
PECVD response miodel is factored in, GAs provide an
average benefit of 10.0% in network training accuracy
and 65.6% in prediction accuracy.

Table 7. Optimal Nelwork Parameters for Mulliple
Response PECVD Modcls

Network Simplex GAs ]
Paramcters
Hidden Neuron 5 5
Momentum 0.35 0.37
L Learning Rate 0.05 0.08 |
Training Tolerance 0.13 0.06

Table 8. Error Comparison for Optimal Multiple
Response PECVD Models

Error ( Simplex GAs Zlmprovement —1
ot | 02891 01391 51.88 l
op | 12979 0.1104 9150 |

R LU EE 0B

o
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5. Conclusion

Although back-propagation neural networks have been
successfully applied to the modeling of semiconductor
{abrication processes, their performance is largely
depencent on network structure and leaming paramcters.
In this paper, genetic algorithm based optimization of
neural network structure and learning paramcters is
proposed. Genetic search is less likely to be trapped in
local extrema than other optimization techniques. This
genetic optimization approach was shown to lead fo
improverments over the simplex algorithm in selecting
optimal neuwral nelwork structure and learning
parameters. Overall, the genetic search outperformed
simplex method by approximately 10% in reducing
training error and by about 66% in reducing prediction
error. The genctic based approach is therefore shown to
be a robust and powerful search method in selection of
oplimal neural network parameters sets.
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