• 제목/요약/키워드: Bacillus thuringiensis K1

검색결과 199건 처리시간 0.021초

두종의 Bacillus thuringiensis 내독소단백질 유전자의 융합에 의한 발현 (Expression of Fusion Products of Insecticidal Crystal Protein Genes from Two Different Bacillus thuringiensis Strains)

  • 제연호;김상현
    • 한국잠사곤충학회지
    • /
    • 제35권1호
    • /
    • pp.36-42
    • /
    • 1993
  • Bacillus thruingiensis subsp. kurstaki HD-1의 내독소단백질 유전자인 CryIA(a)의 N-말단 부분과 B.tk HD-73의 내독소단백질 유전자인 CryIA(c)의 C-말단 부분의 융합에 따른 독성발현 여부에 관하여 조사하였다. 융합생산물인 pSK3, pSK4 및 pSK5의 플라스미드는 각각 4.5kb, 4.8kb 그리고 5.5kb로 구성되어 있다. 형질전환체의 내독소단백질에 대한 Western blotting은 SK4 및 SK5가 77-kDa 그리고 105-kDa에서 B.t k HD-1 항체에 대하여 반응을 나타내었다. 독성검정의 공시충인 배추좀나방 및 담배나방을 사용한 결과 pSK5를 포함하는 형질전환체만이 각각 96% 및 97%의 높은 치사율을 나타냈다.

  • PDF

Construction of Shuttle Promoter-probe and Expression Vectors for Escherichia coli and Bacillus subtilis, and Expression of B. thuringiensis subsp. kurstaki HD-73 Crystal Protein Gene in the Two Species

  • Park, Seung-Hwan;Koo, Bon-Tag;Shin, Byung-Sik;Kim, Jeong-Il
    • Journal of Microbiology and Biotechnology
    • /
    • 제1권1호
    • /
    • pp.37-44
    • /
    • 1991
  • A shuttle promoter-probe vector, pEB203, was derived from pBR322, pPL703 and pUB110. Using the vector, a useful DNA fragment, 319 bp EcoRI fragment, having strong promoter activity has been cloned from Bacillus subtills chromosomal DNA. Selection was based on chloramphenicol resistance which is dependent upon the introduction of DNA fragments allowing expression of a chloramphenicol acetyl transferase gene. The nucleotide sequence of the 319 bp fragment has been determined and the putative -35 and -10 region, ribosome binding site, and ATG initiation codon were observed. This promoter was named EB promoter and the resultant plasmid which can be used as an expression vector was named pEBP313. The crystal protein gene from B. thuringiensis subsp. kurstaki HD-73 was cloned downstream from the EB promoter without its own promoter. When the resultant plasmid, pBT313, was introduced into Escherichia coli and B. subtilis, efficient synthesis of crystal protein was observed in both cells, and the cp gene expression in B. subtilis begins early in the vegetative phase. The cell extracts from both clones were toxic to Hyphantria cunea larvae.

  • PDF

A Novel Negative Regulatory Factor for Nematicidal Cry Protein Gene Expression in Bacillus thuringiensis

  • Yu, Ziquan;Bai, Peisheng;Ye, Weixing;Zhang, Fengjuan;Ruan, Lifang;Yu, Ziniu;Sun, Ming
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권6호
    • /
    • pp.1033-1039
    • /
    • 2008
  • A 3-kb HindIII fragment bearing the cry6Aa2 gene and the adjacent and intergenic regions was cloned from Bacillus thuringiensis strain YBT-1518. Two open reading frames (ORFs), namely, orf1 (termed cry6Aa2) and orf2 that were separated by an inverted-repeat sequence were identified. orf1 encoded a 54-kDa protein that exhibited high toxicity to the plant-parasitic nematode Meloidogyne hapla. The orf2 expression product was not detected by SDS-PAGE, but its mRNA was detected by RT-PCR. The orf2 coexpressed with orf1 at a high level in the absence of the inverted-repeat sequence, whereas, the expression level of otfl was decreased. When orf2 was mutated, the level of orf1 expression was enhanced obviously. In conclusion, the inverted-repeat sequence disturbs orf2 expression, and the orf2 downregulates orf1 expression. This is an example of novel negative regulation in B. thuringiensis and a potential method for enhancing the expression level of cry genes.

Molecular Characterization of A Novel Bacillus thuringiensis Strain from China

  • Qi Xu Feng;Li Ming Shun;Choi Jae Young;Kim Yang-Su;Wang Yong;Kang Joong Nam;Choi Heekyu;Je Yeon Ho;Song Ji Zhen;Li Jian Hong
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제11권1호
    • /
    • pp.57-61
    • /
    • 2005
  • A strain of Bacillus thuringiensis that showed signifi­cantly high toxicity to Plutella xylostella was isolated from a dust sample collected from Chinese tobacco warehouse and characterized. The isolate named B. thuringiensis LY-99 was determined to belong to subsp. alesti (H3a3c) by an H antisera agglutination test and produced bipyramidal inclusions. Plasmid and crystal protein patterns of the LY-99 were different from those of the reference strain, subsp. alesti. PCR analysis with specific primers revealed that this isolate contained abundant cry genes including crylAa, crylAc, crylB, crylD, crylE, crylF and cry2 genes, which was absolutely different from cry gene profile of the subsp. alesti. In addition, insecticidal activity of the LY-99 against P. xylostella larvae was about 44 times higher than that of the subsp. alesti.

Identification and Characterization of a New Alkaline Thermolysin-Like Protease, BtsTLP1, from Bacillus thuringiensis Serovar Sichuansis Strain MC28

  • Zhang, Zhenghong;Hao, Helong;Tang, Zhongmei;Zou, Zhengzheng;Zhang, Keya;Xie, Zhiyong;Babe, Lilia;Goedegebuur, Frits;Gu, Xiaogang
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권8호
    • /
    • pp.1281-1290
    • /
    • 2015
  • Thermolysin and its homologs are a group of metalloproteases that have been widely used in both therapeutic and biotechnological applications. We here report the identification and characterization of a novel thermolysin-like protease, BtsTLP1, from insect pathogen Bacillus thuringiensis serovar Sichuansis strain MC28. BtsTLP1 is extracellularly produced in Bacillus subtilis, and the active protein was purified via successive chromatographic steps. The mature form of BtsTLP1 has a molecule mass of 35.6 kDa as determined by mass spectrometry analyses. The biochemical characterization indicates that BtsTLP1 has an apparent Km value of 1.57 mg/ml for azocasein and is active between 20℃ and 80℃. Unlike other reported neutral gram-positive thermolysin homologs with optimal pH around 7, BtsTLP1 exhibits an alkaline pH optimum around 10. The activity of BtsTLP1 is strongly inhibited by EDTA and a group of specific divalent ions, with Zn2+ and Cu2+ showing particular effects in promoting the enzyme autolysis. Furthermore, our data also indicate that BtsTLP1 has potential in cleaning applications.

배추좀나방에 대한 프루텔고치벌과 미생물농약의 통합생물방제 (An Integrated Biological Control Using an Endoparasitoid Wasp (Cotesia plutellae) and a Microbial Insecticide (Bacillus thuringiensis) against the Diamondback Moth, Plutella xylostella)

  • 김규순;김현;박영욱;김길하;김용균
    • 한국응용곤충학회지
    • /
    • 제52권1호
    • /
    • pp.35-43
    • /
    • 2013
  • 국내 배추좀나방(Plutella xylostella) 집단은 피레스로이드 농약에 대해서 저항성을 보이며, 이는 이 살충제의 작용점인 소듐이온채널 유전자의 돌연변이에 기인된다. 더욱이 배추좀나방은 대부분 상용화된 살충제에 대해서 저항성을 발달시킬 수 있다. 본 연구는 배추좀나방을 효과적으로 방제하기 위해 내부기생성 천적인 프루텔고치벌(Cotesia plutellae)과 미생물농약인 Bacillus thuringiensis의 혼합처리 기술을 개발하기 위해 수행되었다. 프루텔고치벌이 감수성과 저항성 배추좀나방에 대한 기생 선호성에 차등이 있는 지 조사하기 위해 다섯 개 서로 다른 집단에 대해서 살충제 감수성과 프루텔고치벌 기생성 차이를 비교하였다. 이들 배추좀나방 집단들은 피레스로이드, 유기인계, 네오니코틴계 및 곤충성장조절제를 포함하는 세 종류의 상용 살충제에 대한 약제 감수성에서 뚜렷한 차이를 보였다. 그러나 이들 집단들은 프루텔고치벌에 의한 기생률에서는 차이를 보이지 않았다. 더욱이 기생된 배추좀나방은 B. thuringiensis에 대해서 감수성이 증가되었다. 프루텔고치벌이 갖는 면역억제인자 가운데 바이러스 유래 ankyrin 유전자(vankyrin)를 비기생된 배추좀나방에 발현시켰다. Vankyrin의 발현은 배추좀나방 3령충의 B. thuringiensis에 대한 감수성을 현격하게 증가시켰다. 즉, 프루텔고치벌에 의해 야기된 면역저하가 B. thuringiensis의 살충력을 증가시켰다. 이러한 결과들은 프루텔고치벌과 미생물농약인 B. thuringiensis의 혼합처리가 살충제 저항성 배추좀나방을 효과적으로 방제할 수 있다고 제시하고 있다.

새로운 Bacillus thuringiensis NT0423 균주의 배양체계 (Establishment of Culture System of a New Strain NT0423 of Bacillus thuringiensis)

  • 김호산;노종열;이대원;우수동;강석권
    • 한국응용곤충학회지
    • /
    • 제37권2호
    • /
    • pp.187-191
    • /
    • 1998
  • 새로운 Bacillus thuringiensis NT0423균주를 이용한 배양체계를 확립하고 대량생산을 위한 새로운 배양배지를 개발하였다 대두박과 밀기울의 다양한 성분비로 구성된 5종의 SW 배지는 기존의 인공합성배지인 GYS나 LB B. huringiensis 의 성장과 포자형성면에서 훨씬 우수한 결과를 보였고, 그중 대두박과 밀기율이 3:2의 비율로 구성된 SW32배지에서 전체 세포수가 3.9$\times$${10}^{8}$CFU/ml에 달했고, 대부분의 세포가 빠르게 포자를 형성하여 (3.7$\times$${10}^{8}$CFU/ml)가장 효율적이었다. 배양에 따른 배지의 pH는 최저 6.2에서 최고 7.3까지 변화하여 성장에 크게 영향을 미치지 않았고, 전체 배양액에서 대두박과 밀기울이 차지하는 비율이 4%일 경우, ml당 4.2$\times$${10}^{8}$CFU/ml의 포자가 형성되어 B. thuringiensis 의 성장에 가장 유리하였다. 교반플라스크와 5ι의 소규모 발효기를 이용한 B. thuringiensis 의 배양조건 확립에 의해 각각 최대 1$\times$${10}^{9}$CFU/ml과 5$\times$${10}^{10}$CFU/ml에 해당하는 많은 양의 균체를 회수할 수 있다.

  • PDF

Rapid and Accurate Detection of Bacillus anthracis Spores Using Peptide-Quantum Dot Conjugates

  • Park, Tae-Jung;Park, Jong-Pil;Seo, Gwi-Moon;Chai, Young-Gyu;Lee, Sang-Yup
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권11호
    • /
    • pp.1713-1719
    • /
    • 2006
  • A method for the simple, rapid, specific, and accurate detection of Bacillus anthracis spores was developed by employing specific capture peptides conjugated with fluorescent quantum dots (QDs). It was possible to distinguish B. anthracis spores from the spores of B. thuringiensis and B. cereus using these peptide-QD conjugates by flow cytometric and confocal laser scanning microscopic analyses. For more convenient high-throughput detection of B. anthracis spores, spectrofluorometric analysis of spore-peptide-QD conjugates was performed. B. anthracis spores could be detected in less than 1 h using this method. In order to avoid any minor yet false-positive signal caused by the presence of B. thuringiensis spores, the B-Negative peptide, which can only bind to B. thuringiensis, conjugated with another type of QD that fluoresces at different wavelength was also developed. In the presence of mixed B. anthracis and B. thuringiensis spores, the BABA peptide conjugated with QD525 and the B-Negative peptide conjugated with QD585 were able to bind to the former and the latter, specifically and respectively, thus allowing the clear detection of B. anthracis spores against B. thuringiensis spores by using two QD-labeling systems. This capture peptide-conjugated QD system should be useful for the detection of B. anthracis spores.

Bacillus thuringiensis as a Specific, Safe, and Effective Tool for Insect Pest Control

  • Roh, Jong-Yul;Choi, Jae-Young;Li, Ming-Sung;Jin, Byung-Rae;Je, Yeon-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권4호
    • /
    • pp.547-559
    • /
    • 2007
  • Bacillus thuringiensis (Bt) was first described by Berliner [10] when he isolated a Bacillus species from the Mediterranean flour moth, Anagasta kuehniella, and named it after the province Thuringia in Germany where the infected moth was found. Although this was the first description under the name B. thuringiensis, it was not the first isolation. In 1901, a Japanese biologist, Ishiwata Shigetane, discovered a previously undescribed bacterium as the causative agent of a disease afflicting silkworms. Bt was originally considered a risk for silkworm rearing but it has become the heart of microbial insect control. The earliest commercial production began in France in 1938, under the name Sporeine [72]. A resurgence of interest in Bt has been attributed to Edward Steinhaus [105], who obtained a culture in 1942 and attracted attention to the potential of Bt through his subsequent studies. In 1956, T. Angus [3] demonstrated that the crystalline protein inclusions formed in the course of sporulation were responsible for the insecticidal action of Bt. By the early 1980's, Gonzalez et al. [48] revealed that the genes coding for crystal proteins were localized on transmissible plasmids, using a plasmid curing technique, and Schnepf and Whiteley [103] first cloned and characterized the genes coding for crystal proteins that had toxicity to larvae of the tobacco hornworm, from plasmid DNA of Bt subsp. kurstaki HD-1. This first cloning was followed quickly by the cloning of many other cry genes and eventually led to the development of Bt transgenic plants. In the 1980s, several scientists successively demonstrated that plants can be genetically engineered, and finally, Bt cotton reached the market in 1996 [104].