Browse > Article

Molecular Characterization of A Novel Bacillus thuringiensis Strain from China  

Qi Xu Feng (College of Plant Science and Technology, Huazhong Agricultural University)
Li Ming Shun (School of Agricultural Biotechnology, College of Agriculture & Life Sciences, Seoul National University)
Choi Jae Young (School of Agricultural Biotechnology, College of Agriculture & Life Sciences, Seoul National University)
Kim Yang-Su (School of Agricultural Biotechnology, College of Agriculture & Life Sciences, Seoul National University)
Wang Yong (School of Agricultural Biotechnology, College of Agriculture & Life Sciences, Seoul National University)
Kang Joong Nam (School of Agricultural Biotechnology, College of Agriculture & Life Sciences, Seoul National University)
Choi Heekyu (School of Agricultural Biotechnology, College of Agriculture & Life Sciences, Seoul National University)
Je Yeon Ho (School of Agricultural Biotechnology, College of Agriculture & Life Sciences, Seoul National University)
Song Ji Zhen (Zhengzhou Tobacco Research Institute, China National Tobacco Corporation)
Li Jian Hong (College of Plant Science and Technology, Huazhong Agricultural University)
Publication Information
International Journal of Industrial Entomology and Biomaterials / v.11, no.1, 2005 , pp. 57-61 More about this Journal
Abstract
A strain of Bacillus thuringiensis that showed signifi­cantly high toxicity to Plutella xylostella was isolated from a dust sample collected from Chinese tobacco warehouse and characterized. The isolate named B. thuringiensis LY-99 was determined to belong to subsp. alesti (H3a3c) by an H antisera agglutination test and produced bipyramidal inclusions. Plasmid and crystal protein patterns of the LY-99 were different from those of the reference strain, subsp. alesti. PCR analysis with specific primers revealed that this isolate contained abundant cry genes including crylAa, crylAc, crylB, crylD, crylE, crylF and cry2 genes, which was absolutely different from cry gene profile of the subsp. alesti. In addition, insecticidal activity of the LY-99 against P. xylostella larvae was about 44 times higher than that of the subsp. alesti.
Keywords
Bacillus thuringiensis LY-99; Bacillus thur­ingiensis subsp; alesti; cry gene; Plutella xylostella; Insecticidal activity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ceron, J., A. Ortiz, R. Quintero, L. Guereca and A. Bravo (1995) Specific PCR primers detected to identify cryl and cryIII gene within a Bacillus thuringiensis strain collection. Appl. Environ. Microbial. 61,3826-3831
2 Gleave, A. P., R. Williams and R. J. Hedqes (1993) Screening by polymerase chain reaction of Bacillus thuringiensis serotypes for the presence of cryV-like insecticidal protein genes and characterization of cry V gene cloned from B. thuringiensis subsp. kurstaki. Appl. Environ. Microbiol. 59, 1683-1687
3 Huang, Z. P., C. H. Guan and X. Guan (2004) Cloning, characterization and expression of a new cry1Ab gene from Bacillus thuringiensis WB9. Biotechnol. Lett. 26, 1557-1561   DOI   ScienceOn
4 Kalman, S., K. L. Kiehne, J. L. Libs and T. Yamamoto (1993) Cloning of a novel cryIC-type gene from a strain of Bacillus thuringiensis subsp. galleriae. Appl. Environ. Microbiol. 59, 1131-1137
5 Leroy, T., A. M. Henry, M. Royer, I. Altosaar, R. Frutos and D. Duris (2000) Genetically modified coffee plants expressing the Bacillus thuringiensis cry1Ac gene for resistance to leaf miner. Plant Cell Rep. 19, 382-389   DOI   ScienceOn
6 Li, J., J. Carroll and D. J. Ellar (1991) Crystal structure of insecticidal a-endotoxin from Bacillus thuringiensis at 2.5 $\AA$ resolution. Nature 353, 815-821   DOI   ScienceOn
7 Li, M. S., Y. H. Je, I. H. Lee, J. H. Chang, J. Y. Roh, H. S. Kim, H. W. Oh and K. S. Boo (2002) Isolation and characterization of a strain of Bacillus thuringiensis ssp. kurstaki containing a new $\delta$-endotoxin gene. Curr. Microbiol. 45, 299-302   DOI   ScienceOn
8 Russell, R. M., J. L. Robertson and S. E. Sauvin (1977) POLO: a new computer program for probit analysis. Bull. Entomol. Soc. Am. 23,209-213
9 Tabashnik, B. E., Y. B. Liu, R. A. De Maagd and T. J. Dennehy (2000) Cross-resistance of pink bollworm (Pectinophora gossypiella) to Bacillus thuringiensis toxins. Appl. Environ. Microbial. 66, 4582-4584   DOI   ScienceOn
10 Thomas, W. E. and D. J. Ellar (1983) Bacillus thuringiensis var. israelensis crystal $\delta$-endotoxin: effects on insect and mammalian cells in vitro and in vivo. J Cell. Sci. 60, 181-197
11 Meadows, M. P., D. J. Ellis, J. Butt, P. Jarret and H. D. Burges (1992) Distribution, frequency, and diversity of Bacillus thuringiensis in animal feed mill. Appl. Environ. Microbiol. 58, 1344-1350
12 Knowles, B. H. (1994) Mechanism of action of Bacillus thuringiensis insecticidal delta-endotoxins. Adv. Insect Physiol. 24,275-308   DOI
13 Li, J., P. A. Koni and D. J. Ellar (1996) Structure of the mosquitocidal a-endotoxin CytB from Bacillus thuringiensis sp. kyushuensis and implication for membrane pore formation. J Mol. Biol. 257, 129-152   DOI   ScienceOn
14 Lise, J., B. B. Michel, G. Cecile, M. Gil and G. Marc (1998) Transgenic plants for insect resistance. Plant Sci. 131, 1-11   DOI   ScienceOn
15 Hofte, H. and H. R. Whiteley (1989) Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol. Rev. 53, 242-255
16 Chang, J. H., J. Y. Roh, Y. H. Je, H. W. Park, B. R. Jin, S. D. Woo and S. K. Kang (1998) Isolation of a strain of Bacillus thuringiensis ssp. kurstaki HD-1 encoding $\delta$-endotoxin Cry1E. Lett. Appl. Microbiol. 26,387-390   DOI   ScienceOn
17 Herron, G. A., K. Powis and J. Rophail (2001) Insecticide resistance in Aphis gossypii glover (Hemiptera: Aphididae), a serious threat to Australian cotton. Aust. J Entomol. 40, 85-91   DOI   ScienceOn
18 Ceron, J., L. Covarrubias, R. Quintero, A. Ortiz, M. Ortiz, E. Aranda, L. Linda and A. Bravo (1994) PCR analysis of the cryI insecticidal crystal family genes from Bacillus thuringiensis. Appl. Environ. Microbial. 60, 353-356
19 Lecadet, M. M., E. Frachon, V. C. Dumanoir, H. Ripouteau, S. Hamon, P. Laurent and I. Thiery (1999) Updating the H-antigen classification of Bacillus thuringiensis. J Appl. Microbiol. 86, 660-672   DOI   ScienceOn
20 Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685   DOI   PUBMED   ScienceOn
21 Lee, C. S. and A. I. Aronson (1991) Cloning and analysis of delta-endotoxin genes from Bacillus thuringiensis subsp. alesti. J Bacteriol. 173, 6635-6638
22 Schnepf, E., N. Crickmore, J. Van-Rie, D. Lereclus, J. Baum, J. Feitelson, D. R. Zeigler and D. H. Dean (1998) Bacillus thuringiensis and its pesticidal crystal proteins. Microbial. Mol. Biol. 62, 775-806
23 Zhang, H. Y., Z. N. Yu and W. X. Deng (2000) Composition and ecological distribution of cry proteins and their genotypes of Bacillus thuringiensis isolates from warehouses in China. J Invertebr. Pathol. 76, 191-197   DOI   ScienceOn
24 Ferre, J., M. D. Real, J. Van Rie, S. Jansens and M. Peferoen (1991) Resistance to the Bacillus thuringiensis bioinsecticide in a field population of Plutella xylostella is due to a change in a midgut membrane receptor. Proc. Natl. Acad. Sci. USA 88, 5119-5123   DOI
25 Ohba, M. and K. Aizawa (1978) Serological identication of Bacillus thuringeinsis and related bacteria isolated in Japan. J lnvertebr. Pathal. 32, 303-309   DOI
26 Entwistle, F. P., S. J. Cory, J. M. Bailey and S. Higgs (1993) Bacillus thuringiensis, an environmental biopesticide: theory and practice. John Wiley & Sons, Ltd., Chichester
27 Carozzi, N. B., V. C. Kramer, G. W. Warren, S. Ecola and M. G. Koziel (1991) Prediction of insecticidal activity of Bacillus thuringiensis strains by polymerase chain reaction product profiles. Appl. Environ. Microbial. 57, 3057-3061
28 Groot, A. T. and M. Dicke (2002) Insect-resistant transgenic plants in a multi-trophic context. Plant J 31,387-406   DOI   ScienceOn