Browse > Article

Bacillus thuringiensis as a Specific, Safe, and Effective Tool for Insect Pest Control  

Roh, Jong-Yul (Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University)
Choi, Jae-Young (Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University)
Li, Ming-Sung (Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University)
Jin, Byung-Rae (College of Natural Resources and Life Science Dong-A University)
Je, Yeon-Ho (Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University)
Publication Information
Journal of Microbiology and Biotechnology / v.17, no.4, 2007 , pp. 547-559 More about this Journal
Abstract
Bacillus thuringiensis (Bt) was first described by Berliner [10] when he isolated a Bacillus species from the Mediterranean flour moth, Anagasta kuehniella, and named it after the province Thuringia in Germany where the infected moth was found. Although this was the first description under the name B. thuringiensis, it was not the first isolation. In 1901, a Japanese biologist, Ishiwata Shigetane, discovered a previously undescribed bacterium as the causative agent of a disease afflicting silkworms. Bt was originally considered a risk for silkworm rearing but it has become the heart of microbial insect control. The earliest commercial production began in France in 1938, under the name Sporeine [72]. A resurgence of interest in Bt has been attributed to Edward Steinhaus [105], who obtained a culture in 1942 and attracted attention to the potential of Bt through his subsequent studies. In 1956, T. Angus [3] demonstrated that the crystalline protein inclusions formed in the course of sporulation were responsible for the insecticidal action of Bt. By the early 1980's, Gonzalez et al. [48] revealed that the genes coding for crystal proteins were localized on transmissible plasmids, using a plasmid curing technique, and Schnepf and Whiteley [103] first cloned and characterized the genes coding for crystal proteins that had toxicity to larvae of the tobacco hornworm, from plasmid DNA of Bt subsp. kurstaki HD-1. This first cloning was followed quickly by the cloning of many other cry genes and eventually led to the development of Bt transgenic plants. In the 1980s, several scientists successively demonstrated that plants can be genetically engineered, and finally, Bt cotton reached the market in 1996 [104].
Keywords
Bacillus thuringiensis; biopesticide; cry gene; Cry protein;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
Times Cited By Web Of Science : 43  (Related Records In Web of Science)
연도 인용수 순위
1 Beard, C. E., C. Ranasinghe, and R. J. Akhurst. 2001. Screening for novel cry genes by hybridization. Lett. Appl. Microbiol. 33: 241-245   DOI   ScienceOn
2 Beegle, C. C. and T. Yamamoto. 1992. History of Bacillus thuringiensis Berliner research and development. Can. Entomol. 124: 587-616   DOI
3 Berry, C., S. O'Neil, E. Ben-Dov, A. F. Jones, L. Murphy, M. A. Quail, M. T. Holden, D. Harris, A. Zaritsky, and J. Parkhill. 2002. Complete sequence and organization of pBtoxis, the toxin-coding plasmid of Bacillus thuringiensis subsp. israelensis. Appl. Environ. Microbiol. 68: 5082-5095   DOI   ScienceOn
4 Black, B. C., L. A. Brennan, P. M. Dierks, and I. E. Gard. 1997. Commercialization of baculoviral insecticides, pp. 341-387. In Miller, L. K. (ed.), The Baculoviruses. Plenum Press, New York
5 Boonserm, P., P. Davis, D. J. Ellar, and J. Li. 2005. Crystal structure of the mosquito-larvicidal toxin Cry4Ba and its biological implications. J. Mol. Biol. 348: 363-382   DOI   ScienceOn
6 Carozzi, N. B., V. C. Kramer, G. W. Warren, S. Evola, and M. G. Koziel. 1991. Prediction of insecticidal activity of Bacillus thuringiensis strains by polymerase chain reaction product profiles. Appl. Environ. Microbiol. 57: 3057-3061
7 Chang, J. H., J. Y. Choi, B. R. Jin, J. Y. Roh, J. A. Olszewski, S. J. Seo, D. R. O'Reilly, and Y. H. Je. 2003. An improved baculovirus insecticide producing occlusion bodies that contain Bacillus thuringiensis insect toxin. J. Invertebr. Pathol. 84: 30-37   DOI   ScienceOn
8 Choma, C. T. and H. Kaplan. 1992. Bacillus thuringiensis crystal protein: Effect of chemical modification of the cysteine and lysine residues. J. Invertebr. Pathol. 59: 75-80   DOI   ScienceOn
9 de Barjac, H. and F. Lemille. 1970. Presence of flagellar antigenic subfactors in serotype 3 of Bacillus thuringiensis. J. Invertebr. Pathol. 15: 139-140   DOI   ScienceOn
10 Gazit, E., P. La Rocca, M. S. Sansom, and Y. Shai. 1998. The structure and organization within the membrane of the helices composing the pore-forming domain of Bacillus thuringiensis $\delta$-endotoxin are consistent with an 'umbrella-like' structure of the pore. Proc. Natl. Acad. Sci. USA 95: 12289-12294
11 Gill, S. S., E. A. Cowles, and P. V. Pietrantonio. 1992. The mode of action of Bacillus thuringiensis endotoxins. Annu. Rev. Entomol. 37: 615-636   DOI   ScienceOn
12 Gonzalez, J. M. Jr., B. J. Brown, and B. C. Carlton. 1982. Transfer of Bacillus thuringiensis plasmids coding for $\delta$-endotoxin among strains of B. thuringiensis and B. cereus. Proc. Natl. Acad. Sci. USA 79: 6951-6955
13 Gonzalez, J. M. Jr. and B. C. Carlton. 1980. Patterns of plasmid DNA in crystalliferous and acrystalliferous strains of Bacillus thuringiensis. Plasmid 3: 92-98   DOI   ScienceOn
14 Griffitts, J. S., S. M. Haslam, T. Yang, S. F. Garczynski, B. Mulloy, H. Morris, P. S. Cremer, A. Dell, M. J. Adang, and R. V. Aroian. 2005. Glycolipids as receptors for Bacillus thuringiensis crystal toxin. Science 307: 922-925   DOI
15 Krieg, A., A. Huger, G. Langenbruch, and W. Schnetter, 1983. Bacillus thuringiensis var. tenebrionis: A new pathotype effective against larvae of Coleoptera. J. Appl. Entomol. 96: 500-508
16 Horsch, R. B. and H. J. Klee. 1986. Rapid assay of foreign gene expression in leaf discs transformed by Agrobacterium tumefaciens: Role of T-DNA borders in the transfer process. Proc. Natl. Acad. Sci. USA 83: 4428-4432
17 Huang, J., S. Rozelle, C. Pray, and Q. Wang. 2002. Plant biotechnology in China. Science 295: 674-676   DOI
18 Knight, P. J., N. Crickmore, and D. J. Ellar. 1994. The receptor for Bacillus thuringiensis CryIA(c) $\delta$-endotoxin in the brush border membrane of the lepidopteran Manduca sexta is aminopeptidase N. Mol. Microbiol. 11: 429-436   DOI   ScienceOn
19 Lee, M., D. Bae, D. Lee, K. Jang, D. Oh, and S. Ha. 2006. Reduction of Bacillus cereus in cooked rice treated with sanitizers and disinfectants. J. Microbiol. Biotechnol. 16: 639-642   과학기술학회마을
20 Liang, Y., S. S. Patel, and D. H. Dean. 1995. Irreversible binding kinetics of Bacillus thuringiensis CryIA delta-endotoxins to gypsy moth brush border membrane vesicles is directly correlated to toxicity. J. Biol. Chem. 270: 24719-24724   DOI   ScienceOn
21 Lopez-Meza, J. E., J. E. Barboza-Corona, M. C. Del Rincon-Castro, and J. E. Ibarra. 2003. Sequencing and characterization of plasmid pUIBI-l from Bacillus thuringiensis serovar entomocidus LBIT-113. Curr. Microbiol. 47: 395-399
22 Nester, E. W., L. S. Thomashow, M. Metz, and M. Gordon. 2002. 100 Years of Bacillus thuringiensis: A Critical Scientific Assessment. American Academy of Microbiology
23 Steinhaus, E. A. 1951. Possible use of B. t. berliner as an aid in the control of alfalfa caterpillar. Hilgardia 20: 359-381   DOI
24 Strizhov, N., M. Keller, J. Mathur, Z. Koncz-Kalman, D. Bosch, E. Prudovsky, J. Schell, B. Sneh, C. Koncz, and A. Zilberstein. 1996. A synthetic cryIC gene, encoding a Bacillus thuringiensis $\delta$-endotoxin, confers Spodoptera resistance in alfalfa and tobacco. Proc. Natl. Acad. Sci. USA 93: 15012-15017   DOI   ScienceOn
25 Lereclus, D., M. M. Lecadet, J. Ribier, and R. Dedonder. 1982. Molecular relationships among plasmids of Bacillus thuringiensis: Conserved sequences through 11 crystalliferous strains. Mol. Gen. Genet. 186: 391-398   DOI   ScienceOn
26 Hofmann, C., P. Luthy, R. Hutter, and V. Pliska. 1988. Binding of the $\delta$-endotoxin from Bacillus thuringiensis to brush-border membrane vesicles of the cabbage butterfly (Pieris brassicae). Eur. J. Biochem. 173: 85-91   DOI   ScienceOn
27 Martens, J. W., M. Knoester, F. Weijts, S. J. Groffen, Z. Hu, D. Bosch, and J. M. Vlak. 1995. Characterization of baculovirus insecticides expressing tailored Bacillus thuringiensis CryIA(b) crystal proteins. J. Invertebr. Pathol. 66: 249-257   DOI   ScienceOn
28 de Barjac, H. 1981. Identification of H-serotypes of Bacillus thuringiensis, pp. 35-43. In Burges, H. D. (ed.), Microbial Control of Pests and Plant Diseases 1970-1980. Academic Press, London
29 Kuo, W. S. and K. F. Chak. 1996. Identification of novel cry-type genes from Bacillus thuringiensis strains on the basis of restriction fragment length polymorphism of the PCR-amplified DNA. Appl. Environ. Microbiol. 62: 1369-1377
30 Barloy, F., A. Delecluse, L. Nicolas, and M. M. Lecadet. 1996. Cloning and expression of the first anaerobic toxin gene from Clostridium bifermentans subsp. malaysia, encoding a new mosquitocidal protein with homologies to Bacillus thuringiensis $\delta$-endotoxins. J. Bacteriol. 178: 3099-3105   DOI
31 Chao, L., B. Qiyu, S. Fuping, S. Ming, H. Dafang, L. Guiming, and Y. Ziniu. 2007. Complete nucleotide sequence of pBMB67, a 67-kb plasmid from Bacillus thuringiensis strain YBT-1520. Plasmid 57: 44-54   DOI   ScienceOn
32 Marroquin, L. D., D. Elyassnia, J. S. Griffitts, J. S. Feitelson, and R. V. Aroian. 2000. Bacillus thuringiensis (Bt) toxin susceptibility and isolation of resistance mutants in the nematode Caenorhabditis elegans. Genetics 155: 1693-1699
33 Vadlamudi, R. K., E. Weber, I. Ji, T. H. Ji, and L. A. Bulla 1) Jr. 1995. Cloning and expression of a receptor for an insecticidal toxin of Bacillus thuringiensis. J. Biol. Chem. 270: 5490-5494   DOI   ScienceOn
34 Revina, L. P., I. A. Zalunin, I. V. Krieger, N. M. Tulina, Y. A. Wojciechowska, E. I. Levitin, G. G. Chestukhina, and V. M. Stepanov. 1999. Two types of entomocidal crystals of Bacillus thuringiensis ssp. finitimus have the same set of unique delta-endotoxins. Biochemistry (Mosc.) 64: 1122-1127
35 EPA. 2001. Off. Pestic. Programs, Biopesticides, and Pollut. Prev. Div. Biopesticides Registration Action Document; Revised Risks and Benefits Sections: Bacillus thuringiensis Plant Pesticides. U. S. Environmental Protection Agency, Washington, DC
36 Guillet, P. and H. de Barjac. 1979. Toxicite de Bacillus thuringiensis var. israelensis pour les larves de Simulies vectrices de l'Onchocercose. C. R. Acad. Sci. Paris. 289: 549-552
37 Tanada, Y. and H. K. Kaya. 1993. Insect Pathology. Academic Press, Inc., San Diego
38 Valaitis, A. P., M. K. Lee, F. Rajamohan, and D. H. Dean. 1995. Brush border membrane aminopeptidase-N in the midgut of the gypsy moth serves as the receptor for the CryIA(c) $\delta$-endotoxin of Bacillus thuringiensis. Insect Biochem. Mol. Biol. 25: 1143-1151   DOI   ScienceOn
39 Ferre, J. and J. Van Rie. 2002. Biochemistry and genetics of insect resistance to Bacillus thuringiensis. Annu. Rev. Entomol. 47: 501-533   DOI   ScienceOn
40 McDowell, D. G and N. H. Mann. 1991. Characterization and sequence analysis of a small plasmid from Bacillus thuringiensis var. kurstaki strain HD1-DlPEL. Plasmid 25: 113-120   DOI   ScienceOn
41 Choi, J. Y., J. Y. Roh, J. N. Kang, H. J. Shim, S. D. Woo, B. R. Jin, M. S. Li, and Y. H. Je. 2005. Genomic segments cloning and analysis of Cotesia plutellae polydnavirus using plasmid capture system. Biochem. Biophys. Res. Commun. 332: 487-493   DOI   ScienceOn
42 Galitsky, N., V. Cody, A. Wojtczak, D. Ghosh, J. R. Luft, W. Pangborn, and L. English. 2001. Structure of the insecticidal bacterial $\delta$-endotoxin Cry3Bb1 of Bacillus thuringiensis. Acta Crystallogr. D Biol. Crystallogr. 57: 1101-1109   DOI   ScienceOn
43 Tabashnik, B. E. 1994. Evolution of resistance to Bacillus thuringiensis. Annu. Rev. Entomol. 39: 47-79   DOI   ScienceOn
44 Andrup, L., G. B. Jensen, A. Wilcks, L. Smidt, L. Hoflack, and J. Mahillon. 2003. The patchwork nature of rolling-circle plasmids: Comparison of six plasmids from two distinct Bacillus thuringiensis serotypes. Plasmid 49: 205-232   DOI   ScienceOn
45 Angus, T. A. 1956. Association of toxicity with protein-crystalline inclusions of Bacillus sotto Ishiwata, Can. J Microbiol. 2: 122-131   DOI   ScienceOn
46 Bravo, A. 1997. Phylogenetic relationships of Bacillus thuringiensis $\delta$-endotoxin family proteins and their functional domains. J. Bacteriol. 179: 2793-2801   DOI
47 High, S. M., M. B. Cohen, Q. Y. Shu, and I. Altosaar. 2004. Achieving successful deployment of Bt rice. Trends Plant Sci. 9: 286-292   DOI
48 Adang, M. J., E. Firoozabady, J. Klein, D. DeBoer, V. Sekar, J. D. Kemp, E. Murray, T. A. Rocheleau, K. Rashka, G. Staffeld, C. Stock, D. Sutton, and D. J. Merlo. 1987. Expression of a Bacillus thuringiensis insecticidal crystal protein gene in tobacco plants, pp. 345-353. Molecular Strategies for Crop Protection. Agrigenetics Advanced Science Company, Madison, WI
49 Crickmore, N., D. R. Zeigler, E. Schnepf, J. Van Rie, D. Lereclus, J. Baum, A. Bravo, and D. H. Dean 2006. Bacillus thuringiensis toxin nomenclature. http://www.lifesci.sussex.ac.uk/home/Neil_Crickmore/Bt/
50 Goldberg, L. J. and J. Margalit. 1977. A bacterial spore demonstrating rapid larvicidal activity against Anopheles sergentii, Uranotaenia unguiculata, Culex univitattus, Aedes aegypti, and Culex pipiens. Mosquito News 37: 355-358
51 Gill, S. S., E. A. Cowles, and V. Francis. 1995. Identification, isolation, and cloning of a Bacillus thuringiensis CryIAc toxin-binding protein from the midgut of the lepidopteran insect Heliothis virescens. J. Biol. Chem. 270: 27277-27282   DOI   ScienceOn
52 Visser, B., E. Munsterman, A. Stoker, and W. G. Dirkse. 1990. A novel Bacillus thuringiensis gene encoding a Spodoptera exigua-specific crystal protein. J. Bacteriol. 172: 6783-6788   DOI
53 Li, M. S., J. Y. Choi, J. Y. Roh, H. J. Shim, J. N. Kang, Y. Kim, Y. Wang, Z. N. Yu, B. R. Jin, and Y. H. Je. 2007. Identification of molecular characterization of novel cryl-type toxin genes from Bacillus thuringiensis K1 isolated in Korea. J. Microbiol. Biotechnol. (In press.)   과학기술학회마을
54 Martin, P. A. and R. S. Travers. 1989. Worldwide abundance and distribution of Bacillus thuringiensis isolates. Appl. Environ. Microbiol. 55: 2437-2442
55 Stewart, L. M., M. Hirst, M. Lopez Ferber, A. T. Merryweather, P. J. Cayley, and R. D. Possee. 1991. Construction of an improved baculovirus insecticide containing an insect-specific toxin gene. Nature 352: 85-88   DOI   ScienceOn
56 Vaughn, T., T. Cavato, G. Brar, T. Coombe, T. DeGooyer, S. Ford, M. Groth, A. Howe, S. Johnson, K. Kolacz, C. Pilcher, J. Purcell, C. Romano, L. English, and J. Pershing. 2005. A method of controlling com rootworm feeding using a Bacillus thuringiensis protein expressed in transgenic maize. Crop Sci. 45: 931-938   DOI
57 Whalon, M. E. and B. A. Wingerd. 2003. Bt: Mode of action and use. Arch. Insect Biochem. Physiol. 54: 200-211   DOI   ScienceOn
58 Schnepf, H. E. and H. R. Whiteley. 1981. Cloning and expression of the Bacillus thuringiensis crystal protein gene in Escherichia coli. Proc. Natl. Acad. Sci. USA 78: 2893-2897   DOI   ScienceOn
59 Morse, R. J., T. Yamamoto, and R. M. Stroud. 2001. Structure of Cry2Aa suggests an unexpected receptor binding epitope. Structure 9: 409-417   DOI   ScienceOn
60 Burden, J. P., R. S. Hails, J. D. Windass, M. M. Suner, and J. S. Cory. 2000. Infectivity, speed of kill, and productivity of a baculovirus expressing the itch mite toxin txp-1 in second and fourth instar larvae of Trichoplusia ni. J. Invertebr. Pathol. 75: 226-236   DOI   ScienceOn
61 Vaeck, M., A. Reynaerts, H. Hofte, S. Jansens, M. De Beukeleer, C. Dean, M. Zabeau, M. Van Montagu, and J. Leemans. 1987. Transgenic plants protected from insect attack. Nature 328: 33-37   DOI   ScienceOn
62 de Maagd, R. A., A. Bravo, and N. Crickmore. 2001. How Bacillus thuringiensis has evolved specific toxins to colonize the insect world. Trends Genet. 17: 193-199   DOI   ScienceOn
63 Demir, I. and Z. Demirbag. 2006. A productive replication of Hyphantria cunea nucleopolyhedrovirus in Lymantria dispar cell line. J. Microbiol. Biotechnol. 16: 1485-1490   과학기술학회마을
64 Jensen, G. B., B. M. Hansen, J. Eilenberg, and J. Mahillon. 2003. The hidden lifestyles of Bacillus cereus and relatives. Environ. Microbiol. 5: 631-640   DOI   ScienceOn
65 Lacey, L. A. and A. H. Undeen. 1986. Microbial control of black flies and mosquitoes. Annu. Rev. Entomol. 31: 265-296   DOI   ScienceOn
66 Lee, I. H., Y. H. Je, J. H. Chang, J. Y. Roh, H. W. Oh, S. G. Lee, S. C. Shin, and K. S. Boo. 2001. Isolation and characterization of a Bacillus thuringiensis ssp. kurstaki strain toxic to Spodoptera exigua and Culex pipiens. Curr. Microbiol. 43: 284-287   DOI   ScienceOn
67 Lewis, F. B., N. R. Dubois, D. Grimble, W. Metterhouse, and J. Quimby. 1974. Gypsy moth: Efficacy of aerially-applied Bacillus thuringiensis. J. Econ. Entomol. 67: 351-354   DOI
68 Maeda, S. 1995. Further development of recombinant baculovirus insecticides. Curr. Opin. Biotechnol. 6: 313-319   DOI   ScienceOn
69 Je, Y. H., B. R. Jin, H. W. Park, J. Y. Roh, J. H. Chang, S. J. Seo, J. A. Olszewski, D. R. O'Reilly, and S. K. Kang. 2003. Baculovirus expression vectors that incorporate the foreign protein into viral occlusion bodies. Biotechniques 34: 81-87
70 Chaufaux, J., M. Marchal, N. Gilois, I. Jehanno, and C. Buisson. 1997. Investigation of natural strains of Bacillus thuringiensis in different biotopes throughout the world. Can. J. Microbiol. 43: 337-343   DOI   ScienceOn
71 Feitelson, J. S., J. Payne, and L. Kim. 1992. Bacillus thuringiensis: Insects and beyond. Bio/Technology 10: 271-275   DOI
72 Bravo, A., K. Hendrickx, S. Jansens, and M. Peferoen. 1992. Immunocytochemical analysis of specific binding of Bacillus thuringiensis insecticidal crystal proteins to lepidopteran and coleopteran midgut membranes. J. Invertebr. Pathol. 60: 247-253   DOI
73 Berliner, E. 1911. Uber de schlaffsucht der Mehlmottenraupe. Zeitschrift fur das Gesamstadt 252: 3160-3162
74 Christou, P., T. Capell, A. Kohli, J. A. Gatehouse, and A. M. Gatehouse. 2006. Recent developments and future prospects in insect pest control in transgenic crops. Trends Plant Sci. 11: 302-308   DOI   ScienceOn
75 Crickmore, N., D. R. Zeigler, J. Feitelson, E. Schnepf, J. Van Rie, D. Lereclus, J. Baum, and D. H. Dean. 1998. Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 62: 807-813
76 Donovan, W. P., C. Dankocsik, and M. P. Gilbert. 1988. Molecular characterization of a gene encoding a 72-kilodalton mosquito-toxic crystal protein from Bacillus thuringiensis subsp. israelensis. J. Bacteriol. 170: 4732-4738   DOI
77 Li, J. D., J. Carroll, and D. J. Ellar. 1991. Crystal structure of insecticidal $\delta$-endotoxin from Bacillus thuringiensis at 2.5 A resolution. Nature 353: 815-821   DOI   ScienceOn
78 Sacchi, V. F., P. Parenti, G. M. Hanozet, B. Giordana, P. Luthy, and M. G. Wolfersberger. 1986. Bacillus thuringiensis toxin inhibits $K^{+}$-gradient-dependent amino acid transport across the brush border membrane of Pieris brassicae midgut cells. FEBS Lett. 204: 213-218   DOI   ScienceOn
79 Park, H. W., J. Y. Roh, Y. H. Je, B. R. Jin, H. W. Oh, H. Y. Park, and S. K. Kang. 1998. Isolation of a non-insecticidal Bacillus thuringiensis strain belonging to serotype H8a8b. Lett. Appl. Microbiol. 27: 62-66   DOI   ScienceOn
80 Xu, W., C. Zhu, and B. Zhu. 2005. An efficient and stable method for the transformation of heterogeneous genes into Cephalosporium acremonium mediated by Agrobacterium tumefaciens. J. Microbiol. Biotechnol. 15: 683-688   과학기술학회마을
81 McGaughey, W. H. 1985. Insect resistance to the biological insecticide Bacillus thuringiensis. Science 229: 193-195   DOI
82 Chambers, J. A., A. Jelen, M. P. Gilbert, C. S. Jany, T. B. Johnson, and C. Gawron-Burke. 1991. Isolation and characterization of a novel insecticidal crystal protein gene from Bacillus thuringiensis subsp. aizawai. J. Bacteriol. 173: 3966-3976   DOI
83 Aronson, A. I., D. Wu, and C. Zhang. 1995. Mutagenesis of specificity and toxicity regions of a Bacillus thuringiensis protoxin gene. J. Bacteriol. 177: 4059-4065   DOI
84 Bonning, B. C. and B. D. Hammock. 1996. Development of recombinant baculoviruses for insect control. Annu. Rev. Entomol. 41: 191-210   DOI   ScienceOn
85 Juarez-Perez, V. M., M. D. Ferrandis, and R. Frutos. 1997. PCR-based approach for detection of novel Bacillus thuringiensis cry genes. Appl. Environ. Microbiol. 63: 2997-3002
86 Kalman, S., K. L. Kiehne, J. L. Libs, and T. Yamamoto. 1993. Cloning of a novel cryIC-type gene from a strain of Bacillus thuringiensis subsp. galleriae. Appl. Environ. Microbiol. 59: 1131-1137
87 Lereclus, D. and O. Arantes. 1992. spbA locus ensures the segregational stability of pTH1030, a novel type of Gram-positive replicon. Mol. Microbiol. 6: 35-46   DOI   ScienceOn
88 Li, M. S., Y. H. Je, I. H. Lee, J. H. Chang, J. Y. Roh, H. S. Kim, H. W. Oh, and K. S. Boo. 2002. Isolation and characterization of a strain of Bacillus thuringiensis ssp. kurstaki containing a new $\delta$-endotoxin gene. Curr. Microbiol. 45: 299-302   DOI   ScienceOn
89 Masson, L., M. Erlandson, M. Puzstai-Carey, R. Brousseau, V. Juarez-Perez, and R. Frutos. 1998. A holistic approach for determining the entomopathogenic potential of Bacillus thuringiensis strains. Appl. Environ. Microbiol. 64: 4782-4788
90 Zhong, C., D. J. Ellar, A. Bishop, C. Johnson, S. Lin, and E. R. Hart. 2000. Characterization of a Bacillus thuringiensis $\delta$-endotoxin which is toxic to insects in three orders. J. Invertebr. Pathol. 76: 131-139   DOI   ScienceOn
91 EPA. 2006. Biopesticide active ingredients and products containing them. http://www.epa.gov/pesticides/biopesticides/product_lists/bppd_products_by_AI.pdf
92 Knight, J. S., A. H. Broadwell, W. N. Grant, and C. B. Shoemaker. 2004. A strategy for shuffling numerous Bacillus thuringiensis crystal protein domains. J. Econ. Entomol. 97: 1805-1813   DOI   ScienceOn
93 Schnepf, E., N. Crickmore, J. Van Rie, D. Lereclus, J. Baum, J. Feitelson, D. R. Zeigler, and D. H. Dean. 1998. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 62: 775-806
94 de Barjac, H. and E. Frachon. 1990. Classification of Bacillus thuringiensis strains. Entomophaga 35: 233-240   DOI
95 Hofte, H. and H. R. Whiteley. 1989. Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol. Rev. 53: 242-255
96 Kim, J. S., J. Y. Choi, J. H. Chang, H. J. Shim, J. Y. Roh, B. R. Jin, and Y. H. Je. 2005. Characterization of an improved recombinant baculovirus producing polyhedra that contains Bacillus thuringiensis CrylAc crystal protein. J. Microbiol. Biotechnol. 15: 710-715   과학기술학회마을
97 Lee, M. K., B. A. Young, and D. H. Dean. 1995. Domain III exchanges of Bacillus thuringiensis CryIA toxins affect binding to different gypsy moth midgut receptors. Biochem. Biophys. Res. Commun. 216: 306-312   DOI   ScienceOn
98 Carlson, C. R., D. A. Caugant, and A.-B. Kolsto, 1994. Genotypic diversity among Bacillus cereus and Bacillus thuringiensis strains. Appl. Environ. Microbiol. 60: 1719-1725
99 Kim, H. S., M. S. Li, and J. Y. Roh. 2000. Characterization of crystal proteins of Bacillus thuringiensis NT0423 isolate from Korean sericultural farms. Int. J. Indust. Entomol. 1: 115-122
100 Letowski, J., A. Bravo, R. Brousseau, and L. Masson. 2005. Assessment of cry1 gene contents of Bacillus thuringiensis strains by use of DNA microarrays. Appl. Environ. Microbiol. 71: 5391-5398   DOI   ScienceOn
101 Lorence, A., A. Darszon, C. Diaz, A. Lievano, R. Quintero, and A. Bravo. 1995. $\delta$-Endotoxins induce cation channels in Spodoptera frugiperda brush border membranes in suspension and in planar lipid bilayers. FEBS Lett. 360: 217-222   DOI   ScienceOn
102 Li, J., P. A. Koni, and D. J. Ellar. 1996. Structure of the mosquitocidal $\delta$-endotoxin CytB from Bacillus thuringiensis sp. kyushuensis and implications for membrane pore formation. J. Mol. Biol. 257: 129-152   DOI   ScienceOn
103 Shelton, A. M., J. Z. Zhao, and R. T. Roush. 2002. Economic, ecological, food safety, and social consequences of the deployment of Bt transgenic plants. Annu. Rev. Entomol. 47: 845-881   DOI   ScienceOn
104 Tu, J., G. Zhang, K. Datta, C. Xu, Y. He, Q. Zhang, G. S. Khush, and S. K. Datta. 2000. Field performance of transgenic elite commercial hybrid rice expressing Bacillus thuringiensis $\delta$-endotoxin. Nat. Biotechnol. 18: 1101-1104   DOI   ScienceOn
105 Tabashnik, B. E., T. J. Dennehy, and Y. Carriere. 2005. Delayed resistance to transgenic cotton in pink bollworm. Proc. Natl. Acad. Sci. USA 102: 15389-15393
106 Carlton, B. C. and J. M. Gonzalez Jr. 1985. Plasmids and $\delta$-endotoxin production in different subspecies of Bacillus thuringiensis, pp. 246-252. In Hoch, J. A. and P. Setlow (eds.), Molecular Biology of Microbial Differentiation. American Society for Microbiology, Washington, D.C
107 Kim, H. S., H. W. Park, S. H. Kim, Y. M. Yu, S. J. Seo, and S. K. Kang. 1993. Dual specificity of $\delta$-endotoxins produced by newly isolated Bacillus thuringiensis NT0423. Korean J. Appl. Entomol. 32: 426-432
108 Kronstad, J. W., H. E. Schnepf, and H. R. Whiteley. 1983. Diversity of locations for Bacillus thuringiensis crystal protein genes. J. Bacteriol, 154: 419-428
109 Carpenter, J. E. and L. P. Gianessi. 2001. Agricultural biotechnology: Updated benefit estimates. In: National Center for Food and Agricultural Policy. Washington, DC
110 Ibarra, J. E., M. C. del Rincon, S. Orduz, D. Noriega, G. Benintende, R. Monnerat, L. Regis, C. M. de Oliveira, H. Lanz, M. H. Rodriguez, J. Sanchez, G. Pena, and A. Bravo. 2003. Diversity of Bacillus thuringiensis strains from Latin America with insecticidal activity against different mosquito species. Appl. Environ. Microbiol. 69: 5269-5274   DOI   ScienceOn
111 Lambert, B. and M. Peferoen. 1992. Insecticidal promise of Bacillus thuringiensis. Facts and mysteries about a successful biopesticide. BioScience 42: 112-122   DOI   ScienceOn
112 Ben-Dov, E., A. Zaritsky, E. Dahan, Z. Barak, R. Sinai, R. Manasherob, A. Khamraev, E. Troitskaya, A. Dubitsky, N. Berezina, and Y. Margalith. 1997. Extended screening by PCR for seven cry-group genes from field-collected strains of Bacillus thuringiensis. Appl. Environ. Microbiol. 63: 4883-4890
113 Grochulski, P., L. Masson, S. Borisova, M. Pusztai-Carey, J. L. Schwartz, R. Brousseau, and M. Cygler. 1995. Bacillus thuringiensis CryIA(a) insecticidal toxin: Crystal structure and channel formation. J. Mol. Biol. 254: 447-464   DOI   ScienceOn
114 Barton, K. A., H. R. Whiteley, and N.-S. Yang. 1987. Bacillus thuringiensis $\delta$-endotoxin expressed in transgenic Nicotiana tabacum provides resistance to lepidopteran insects. Plant Physiol. 85: 1103-1109   DOI   ScienceOn
115 Bernhard, K., P. Jarrett, M. Meadows, J. Butt, D. J. Ellis, G. M. Roberts, S. Pauli, P. Rodgers, and H. D. Burges. 1997. Natural isolates of Bacillus thuringiensis: Worldwide distribution, characterization, and activity against insect pests. J. Invertebr. Pathol. 70: 59-68   DOI   ScienceOn
116 Qaim, M. and D. Zilberman. 2003. Yield effects of genetically modified crops in developing countries. Science 299: 900-902   DOI
117 Ribeiro, B. M. and N. E. Crook. 1993. Expression of full-length and truncated forms of crystal protein genes from Bacillus thuringiensis subsp. kurstaki in a baculovirus and pathogenicity of the recombinant viruses. J. Invertebr. Pathol. 62: 121-130   DOI   ScienceOn
118 Lecadet, M. M., E. Frachon, V. C. Dumanoir, H. Ripouteau, S. Hamon, P. Laurent, and I. Thiery. 1999. Updating the H-antigen classification of Bacillus thuringiensis. J. Appl. Microbiol. 86: 660-672   DOI   ScienceOn
119 Choi, J. Y., J. Y. Roh, M. S. Li, H. J. Shim, J. N. Kang, S. D. Woo, B. R. Jin, and Y. H. Je. 2004. Cloning of small plasmids from Bacillus thuringiensis subsp. israelensis using plasmid capture system. Int. J. Indust. Entomol. 9: 183-186