• Title/Summary/Keyword: Bacillus subtilis

Search Result 1,793, Processing Time 0.028 seconds

Interaction of Apidaecin Ib with Phospholipid Bilayers and its Edwardsiella Species-specific Antimicrobial Activity

  • Seo, Jung-Kil;Go, Hye-Jin;Moon, Ho-Sung;Lee, Min-Jeong;Hong, Yong-Ki;Jeong, Hyun-Do;Nam, Bo-Hye;Park, Tae-Hyun;Park, Nam-Gyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.1
    • /
    • pp.115-122
    • /
    • 2012
  • Apidaecin Ib had strong antimicrobial activity against several tested Gram-negative bacteria including Escherichia coli, Enterobacter cloacae, and Shigella flexneri (MECs; $0.3-1.5{\mu}g/mL$), but showed no activity against all the tested Gram-positive bacteria including Bacillus subtilis, Micrococcus luteus, Staphylococcus aureus and one yeast, Candida albicans (MECs; > $125{\mu}g/mL$). Interestingly, this peptide showed potent antibacterial activity only against Edwardsiella species (MECs; $0.6-3.6{\mu}g/mL$) among the tested fish pathogenic bacteria through a bacteriostatic process and showed no significant hemolytic activity. Apidaecin Ib took an unordered structure in all environments and also had very weak membrane perturbation activity even at $25{\mu}M$. Anti-Edwardsiella activity of apidaecin Ib is stronger than those of other antimicrobial polypeptides or antibiotics, but its activity is salt-sensitive. These results suggest that apidaecin Ib has Edwardsiella speciesspecific antibacterial activity and could be applied as new preventive or control additives for Edwardsiella species infection in freshwater fish aquaculture.

Effects of In Vrtro Synergism of Eunkyo-san and Ciprofloxacin against 9 Strains of Aerobic Gram(+) Bacteria (은교산과 Ciprofloxacin 병용이 호기성 Gram(+) 세균주에 대한 시험관내 항균력에 미치는 영향)

  • Sin Chang-Ho;Song Kwang-Kyu;Park Mee-Yeon;Choi Hae-Yun;Kim Jong-Dae
    • The Journal of Korean Medicine
    • /
    • v.26 no.1 s.61
    • /
    • pp.195-205
    • /
    • 2005
  • Objective & Methods: To evaluate the in vitro synergic effect of Eunkyo-san, a traditional poly-herbal formula used in the treatment of respiratory diseases in oriental medicine with quinolone antibiotics, represented by ciprofloxacin (CPFX), which was used in the minimal concentration (MIC), $MIC_{50}$ and $MIC_{90}$. of single use of quinolones in concomitant treatment with Eunkyo-san against 9 strain$ of gram positive bacteria. Results: In. the case of aerobic gram positive bacteria, the MIC, $MIC_{50}$ and $MIC_{90}$ against Staphylococcus aureus, Staphylococcus aureus smith, Staphylococcus epidermidis, Streptococcus pyogenes, Streptococcus pneumoniae Type I, Type II and Type III were significantly decreased in concomitant treated groups with Eunkyo-san compared to those of single treated groups of CPFX, respectively. However, no significant changes were demonstrated against Bacillus subtilis and Enterococcus faecalis. Conclusion: The in vitro antibacterial activity of CPFX were increased against some strains of gram positive strains, especially, pneumococcus such as Staphylococcus and Streptococcus, by concomitant use of Eunkyo-san.

  • PDF

Effect of Chungkukjang Water Extracts on the Dough Fermentation and Quality Characteristics of Bread (청국장 물 추출물이 반죽의 발효와 빵의 품질 특성에 미치는 영향)

  • Lee Ye-Kyung;Lee Myung-Ye;Kim Mee-Jung;Kim Soon-Dong
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.14 no.5
    • /
    • pp.487-494
    • /
    • 2004
  • The effect of water extracts of Chungkukjang(WEC: 10%, w/v), which was prepared using Bacillus subtilis isolated from Korean traditional Chungkukjang, on the pH, acidity and volume of the dough, and loaf volume index(LVI), color, texture, retrogradation degree, microscopic observation and sensory quality of the bread were investigated. Experimental plots were divided to 3 groups(Control; without WEC, I; added 2.5% WEC against total amount of water, II; added 5.0% WEC against total amount of water). There were no significant difference in pH and acidity among each experimental groups. Dough volume were higher but LVI were lower in the 1- and II-bread than those of control group. L* values of the top crust and internal tissue in the I- and II-bread were lower than those of control group. The higher addition amounts had the lower L* values. Hardness, strength, gumminess and brittleness were higher, but cohesiveness and springiness were lower in the WEC-breads than those of control. In the results of microscopic observation, there were scarce of the bigger starch granules and a sparse structure, while there were smaller starch granules in the WEC-bread. The scores of crispy taste of the WEC-bread were lower than those of the control group, but there were no significant difference in tenderness, odor, savory taste and overall acceptability between the control and the I-bread. The retrogradation rate of the bread stored for 3 days at 25℃ was 45.09% in control, 17.92% in I-bread, and 12.45% in II-bread, respectively.

  • PDF

Identification and Antibiotic Susceptibility of the Bacteria from Non-odontogenic Infectious Lesions

  • Kim, Yong Min;Kim, Jae-Jin;Kim, Mija;Park, Soon-Nang;Kim, Hwa-Sook;Kook, Joong-Ki;Kim, Hak Kyun
    • International Journal of Oral Biology
    • /
    • v.39 no.2
    • /
    • pp.87-95
    • /
    • 2014
  • The purpose of this study was to isolate and identify bacteria from the 4 patients with non-odontogenic infectious lesions (mucormycosis, chronic inflammation from wound infection, and two actinomycosis) and determine their antimicrobial susceptibility against eight antibiotics. Bacterial culture was performed under three culture conditions (anaerobic, $CO_2$, and aerobic incubator). The bacterial strains were identified by 16S rRNA gene (16S rDNA) sequence comparison analysis method. For investigating the antimicrobial susceptibility of the bacteria against eight antibiotics, penicillin G, amoxicillin, tetracycline, cefuroxime, erythromycin, clindamycin, vancomycin, and Augmentin$^{(R)}$ (amoxicillin + clavulanic acid), minimum inhibitory concentration (MIC) measurement was performed using broth microdilution assay. Nosocomial pathogens such as Enterococcus faecalis, Klebsiella pneumoniae, Bacillus subtilis, and Neisseria flavescens were isolated from mucormycosis. Veillonella parvula, Enterobacter hormaechei, and Acinetobacter calcoaceticus were isolated from chronic inflammatory lesion. Actinomyces massiliensis was isolated from actinomycosis in parotid gland. Capnocytophaga ochracea was isolated from actinomycosis in buccal region in anaerobic condition. There was no susceptible antibiotic to all bacteria in mucormycosis. Tetracycline was susceptible to all bacteria in chronic inflammation. C. ochracea was resistant to vancomycin and penicillin G; and other antibiotics showed susceptibility to all bacteria in actinomycosis. The results indicated that the combined treatment of two or more antibiotics is better than single antibiotic treatment in mucormycosis, and penicillin is the first recommended antibiotic to treat actinomycosis.

Characterization and Stability of Gardenia Jasminoides Biotransformed Pigment Produced in Jar Fermentor (Jar Fermentor에서 생산된 치자 생물변환 색소의 특성 및 안정성)

  • Kim, Seon-Jae;Jang, Hong-Gi
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.6
    • /
    • pp.880-884
    • /
    • 2005
  • Yellow pigment of Gardenia jasminoides was converted into new pigment by whole-cell biotransformation of thirteen different microbial species. The color value of the biotransformed pigment, which was produced by Streptococcus mutans MK-34, was higher than those of other biotransformed pigments. The biotransformed pigment produced by S. mutans MK-34 dispalyed an characteristic absorption peak at 588 nm and the absorption value increased during the incubation in a jar fermentor. The effects of light and temperature $(60^{\circ}C)$ on storage stability of the biotransformed pigment were investigated. As a result, the biotransformed pigments produced by Streptococcus mutans and Bacillus subtilis were more stable than Gardenia jasminoides yellow pigment during storage.

Antimicrobial Activity of Water-soluble Extract from Artemisia princeps var. orientalis (Artemisia princeps var. orientalis 수용성 추출물의 항균효과)

  • Cho, Hwa-Young;Yoon, Sung-Yong;Park, Jeong-Jin;Yun, Kung-Won;Park, Jong-Moon
    • KSBB Journal
    • /
    • v.21 no.2
    • /
    • pp.129-132
    • /
    • 2006
  • The importance of natural preservative has increased in recent years. The natural preservatives have been used in the field of foods, cosmetics and pharmacology. In the present work Artemisia sp., well recognized for their effect of antimicrobial activity, were extracted by methanol and water sequentially for selecting only water-soluble compounds that can be used as additives in food and cosmetics. Antimicrobial activities of water extracts from stem and leaf of Artemisia princeps var. orientalis were investigated by the disc diffusion method. Two gram positive bacteria(Staphylococcus aureus and Bacillus subtilis) and three gram negative bacteria(Escherichia coil, Agrobacterium tumefaciens and Pseudomonas putida) were used for antimicrobial activity studies. The water-soluble compounds from methanol extract showed higher antimicrobial activity than only water extract to these bacteria. Comparative evaluation of water-soluble metabolite profiles with caffeic acid that is known as an antimicrobial compound from Artemisia sp. was performed by high performance liquid chromatography with photo-diode array detection.

A Two-Strain Mixture of Rhizobacteria Elicits Induction of Systemic Resistance Against Pseudomonas syringae and Cucumber Mosaic Virus Coupled to Promotion of Plant Growth on Arabidopsis thaliana

  • Ryu Choong-Min;Murphy John F.;Reddy M.S.;Kloepper Joseph W.
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.2
    • /
    • pp.280-286
    • /
    • 2007
  • We evaluated a commercial biopreparation of plant growth-promoting rhizobacteria (PGPR) strains Bacillus subtilis GB03 and B. amyloliquefaciens IN937a formulated with the carrier chitosan (Bio Yield) for its capacity to elicit growth promotion and induced systemic resistance against infection by Cucumber Mosaic Virus (CMV) and Pseudomonas syringae pv. tomato DC3000 in Arabidopsis thaliana. The biopreparation promoted plant growth of Arabidopsis hormonal mutants, which included auxin, gibberellic acid, ethylene, jasmonate, salicylic acid, and brassinosteroid insensitive lines as well as each wild-type. The biopreparation protected plants against CMV based on disease severity in wild-type plants. However, virus titre was not lower in control plants and those treated with biopreparation, suggesting that the biopreparation induced tolerance rather than resistance against CMV. Interestingly, the biopreparation induced resistance against CMV in NahG plants, as evidenced by both reduced disease severity and virus titer. The biopreparation also elicited induced resistance against P. syringae pv. tomato in the wild-type but not in NahG transgenic plants, which degrade endogenous salicylic acid, indicating the involvement of salicylic acid signaling. Our results indicate that some PGPR strains can elicit plant growth promotion by mechanisms that are different from known hormonal signaling pathways. In addition, the mechanism for elicitation of induced resistance by PGPR may be pathogen-dependent. Collectively, the two-Bacilli strain mixture can be utilized as a biological inoculant for both protection of plant against bacterial and viral pathogens and enhancement of plant growth.

Improved Production of Long-Chain Fatty Acid in Escherichia coli by an Engineering Elongation Cycle During Fatty Acid Synthesis (FAS) Through Genetic Manipulation

  • Jeon, Eunyoung;Lee, Sunhee;Lee, Seunghan;Han, Sung Ok;Yoon, Yeo Joon;Lee, Jinwon
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.7
    • /
    • pp.990-999
    • /
    • 2012
  • The microbial biosynthesis of fatty acid of lipid metabolism, which can be used as precursors for the production of fuels of chemicals from renewable carbon sources, has attracted significant attention in recent years. The regulation of fatty acid biosynthesis pathways has been mainly studied in a model prokaryote, Escherichia coli. During the recent period, global regulation of fatty acid metabolic pathways has been demonstrated in another model prokaryote, Bacillus subtilis, as well as in Streptococcus pneumonia. The goal of this study was to increase the production of long-chain fatty acids by developing recombinant E. coli strains that were improved by an elongation cycle of fatty acid synthesis (FAS). The fabB, fabG, fabZ, and fabI genes, all homologous of E. coli, were induced to improve the enzymatic activities for the purpose of overexpressing components of the elongation cycle in the FAS pathway through metabolic engineering. The ${\beta}$-oxoacyl-ACP synthase enzyme catalyzed the addition of acyl-ACP to malonyl-ACP to generate ${\beta}$-oxoacyl-ACP. The enzyme encoded by the fabG gene converted ${\beta}$-oxoacyl-ACP to ${\beta}$-hydroxyacyl-ACP, the fabZ catalyzed the dehydration of ${\beta}$-3-hydroxyacyl-ACP to trans-2-acyl-ACP, and the fabI gene converted trans-2-acyl-ACP to acyl-ACP for long-chain fatty acids. In vivo productivity of total lipids and fatty acids was analyzed to confirm the changes and effects of the inserted genes in E. coli. As a result, lipid was increased 2.16-fold higher and hexadecanoic acid was produced 2.77-fold higher in E. coli JES1030, one of the developed recombinants through this study, than those from the wild-type E. coli.

Analysis of Microflora Profile in Korean Traditional Nuruk

  • Song, Sang Hoon;Lee, Chunghee;Lee, Sulhee;Park, Jung Min;Lee, Hyong-Joo;Bai, Dong-Hoon;Yoon, Sung-Sik;Choi, Jun Bong;Park, Young-Seo
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.1
    • /
    • pp.40-46
    • /
    • 2013
  • A variety of nuruk were collected from various provinces in Korea, and their microflora profiles were analyzed at the species level. A total of 42 nuruk samples were collected and when the viable cell numbers in these nuruk were enumerated, the average cell numbers of bacteria, fungi, yeast, and lactic acid bacteria from all nuruk were 7.21, 7.91, 3.49, and 4.88 log CFU/10 g, respectively. There were no significant differences in viable cell numbers of bacteria or fungi according to regions collected. Bacillus amyloliquefaciens and B. subtilis were the predominant bacterial strains in most samples. A significant portion, 13 out of 42 nuruk, contained foodborne pathogens such as B. cereus or Cronobacter sakazakii. There were various species of lactic acid bacteria such as Enterococcus faecium and Pediococcus pentosaceus in nuruk. It was unexpectedly found that only 13 among the 42 nuruk samples contained Aspergillus oryzae, the representative saccharifying fungi in makgeolli, whereas a fungi Lichtheimia corymbifera was widely distributed in nuruk. It was also found that Pichia jadinii was the predominant yeast strain in most nuruk, but the representative alcohol fermentation strain, Saccharomyces cerevisiae, was isolated from only 18 out of the 42 nuruk. These results suggested that a variety of species of fungi and yeast were distributed in nuruk and involved in the fermentation of makgeolli. In this study, a total of 64 bacterial species, 39 fugal species, and 15 yeast species were identified from nuruk. Among these strains, 37 bacterial species, 20 fungal species, and 8 yeast species were distributed less than 0.1%.

Antioxidant and Antimicrobial Activities of Camellia Oleifera Seed Oils

  • Zhou, Qing-Fen;Jia, Xue-Jing;Li, Qian-Qian;Yang, Rui-Wu;Zhang, Li;Zhou, Yong-Hong;Ding, Chun-Bang
    • Journal of Applied Biological Chemistry
    • /
    • v.57 no.2
    • /
    • pp.123-129
    • /
    • 2014
  • The antioxidant and antimicrobial activities of Camellia oleifera seed oil were studied. Four kinds of seed oil samples were prepared, crude oil and refined oil, extracted by cold pressing method (CPC, CPR), and organic solvent extraction (OSC, OSR). Antioxidant activity analysis was measured in 2,2-azinobis (3-ethylbenzothiazoline-6-sulfonic acid)-diammonium salt, ferric reducing Ability of Plasma, and 2,2-diphenyl-1-picrylhydrazyl assays. Besides, the percentage of inhibition of red blood cells hemolysis induced by 2,2'-azobis(2-amidnopropane) dihydrochlorid, the lag time of LDL conjugated dienes formation in vitro, and the inhibitors of loss in tryptophan fluorescence were all used to estimate the antioxidant activity of the samples. The total phenolic contents (TPC) were detemined by Folin-Ciocalteu method. The TPC of the C. oleifera seed oils can be arranged in descending order: CPC ($1.9172{\mu}g/mL$) > OSC ($1.5218{\mu}g/mL$) > CPR ($1.0611{\mu}g/mL$) > OSR ($0.6782{\mu}g/mL$). And the oils were investigated for activity against Escherichia coli, Bacillus subtilis, Saccharomyces cerevisiae and Aspergillus niger. The results showed the antioxidant activity of crude oil by cold pressing method was stronger than others, and all oils did inhibit activity of the top three bacteria expert A. niger. The further significance of the study contributes to measure the antioxidant and antimicrobial activity of the potential health benefits by the different methods of preparation and the oil of C. oleifera seeds acting as free radical scavenger, pharmaceuticals and preservatives may offer some information in medicine and cosmetic not just in food field.