• Title/Summary/Keyword: Bacillus sp. S-1

Search Result 311, Processing Time 0.024 seconds

Isolation and characterization of cellulolytic bacteria, Bacillus sp. EFL1, EFL2, and EFP3 from the mixed forest (혼효림으로부터 셀룰로오스분해 박테리아 분리 및 효소학적 특성규명)

  • Park, Hwa Rang;Oh, Ki-Cheol;Kim, Bong-Gyu
    • Journal of Applied Biological Chemistry
    • /
    • v.61 no.1
    • /
    • pp.59-67
    • /
    • 2018
  • This study was conducted to isolate the cellulolytic bacteria able to grow on LB- Carboxymethyl cellulose (CMC) agar trypan blue medium from the mixed forest and Larix leptolepis stands. Three bacterial strains with high activity against both CMC and xylan were isolated. Both API kit test and 16S rRNA gene sequence analysis revealed that the three different isolates belong to the gene Bacillus. Therefore, the isolates named as Bacillus sp. EFL1, Bacillus sp. EFL2, and Bacillus sp. EFP3. The optimum growth temperature of Bacillus sp. EFL1, EFL2, and EFP3 were $37^{\circ}C$. The optimum temperature for CMCase and xylanase from Bacillus sp. EFL1 were $50^{\circ}C$. The optimum pH of Bacillus sp. EFL1 xylanase was pH 5.0 but the optimum pH of CMCase from Bacillus sp. EFL1 was pH 6.0. The optimum temperature of CMCase and xylanase from Bacillus sp. EFL2 was $60^{\circ}C$, respectively. The optimum pH of CMCase of Bacillus sp. EFL2 was 5.0, whereas xylanase showed high activity at pH 3.0-9.0. The optimum temperature for CMCase and xylanase of Bacillus sp. EFP3 was $50^{\circ}C$. The optimum pH for CMCase and xylanse was 5.0 and 4.0, respectively. CMCases from Bacillus sp. EFL1, EFL2, and EFP3 were thermally unstable. Although xylanase from Bacillus sp. EFL1 and EFP3 showed to be thermally unstable, xylanase from Bacillus sp. EFL2 showed to be thermally stable. Therefore, Bacillus sp. EFL2 has great potential for animal feed, biofuels, and food industry applications.

Isolation and Enzyme Production of a Neutral Protease-Producing Strain, Bacillus sp. DS-1. (Neutral Pretense를 생산하는 Bacillus sp. DS-1 균주의 분리와 효소 생산성)

  • 전대식;강대경;김하근
    • Microbiology and Biotechnology Letters
    • /
    • v.30 no.4
    • /
    • pp.346-351
    • /
    • 2002
  • A bacterium producing the neutral pretense was isolated from soil, and was identified as Bacillus sp. DS-1 by 16S rRNA sequence comparison and biochemical determinations. The production of protease from Bacillus sp. DS-1 was increased 20% and 30% by the additions of 1% glucose and 1% yeast extract, respectively. The optimum pH and temperature for the protease activity were pH 7.0 and 55$^{\circ}C$. Bacillus sp. DS-1 produced a metalloprotease as a major protease in culture medium, since the pretense activity in culture supernatant was inhibited by the presence of 1 mM EDTA significantly.

Utilization the Tofu-Residue for Production of the Bacteriocin 1. Cultural Conditions of Bacillus sp. for Amylase (박테리오신의 생산을 위한 두부비지의 이용 1. 두부비지에서 분리한 Bacillus sp.에 의한 Amylase의 생산조건)

  • 이선희;이명숙
    • Journal of Food Hygiene and Safety
    • /
    • v.15 no.3
    • /
    • pp.271-276
    • /
    • 2000
  • A amylase producing bacteria were isolated from tofu residue and identified as Bacillus sp. according to the morphological and biochemical properties, which were named Bacillus sp. GM7330 and Bacillus sp. GM7312. The cultural condition for the production of amylase was showed on 5% tofu residue added 3% glucose and 0.15% yeast extract. And incubated during 72 hrs at 30。C, Bacillus sp. GM7330 and Bacillus sp. GM7312 were producing amylase of 488 units and 341 units.

  • PDF

Dominant-species Variation of Soil Microbes by Temperate Change (온도변화에 기인한 토양미생물 우점종의 변화에 관한 연구)

  • Park, Kap-Joo;Lee, Byeong-Chol;Lee, Jae-Seok;Park, Chan-Sun;Cho, Myung-Hwan
    • Korean Journal of Environmental Biology
    • /
    • v.29 no.1
    • /
    • pp.52-60
    • /
    • 2011
  • Today, the weather is changing continually, due to the progress of global warming. As the weather changes, the habitats of different organisms will change as well. It cannot be predicted whether or not the weather will change with each passing day. In particular, the biological distribution of the areas climate change affects constitutes a major factor in determining the natural state of indigenous plants; additionally, plants are constantly exposed to rhizospheric microorganisms, which are bound to be sensitive to these changes. Interest has grown in the relationship between plants and rhizopheric microorganisms. As a result of this interest we elected to research and experiment further. We researched the dominant changes that occur between plants and rhizospheric organisms due to global warming. First, we used temperature as a variable. We employed four different temperatures and four different sites: room temperature ($27^{\circ}C$), $+2^{\circ}C$, $+4^{\circ}C$, and $+6^{\circ}C$. The four different sites we used were populated by the following species: Pinus deniflora, Pinus koraiensis, Quercus acutissima, and Alnus japonica. We counted colonies of these plants and divided them. Then, using 16S rRNA analysis we identified the microorganisms. In conclusion, we identified the following genera, which were as follows: 10 species of Bacillus, 2 Enterobacter species, 4 Pseudomonas species, 1 Arthrobacter species, 1 Chryseobacterium species, and 1 Rhodococcus species. Among these genera, the dominant species in Pinus deniflora was discovered in the same genus, but a different species dominated at $33^{\circ}C$. Additionally, that of Pinus koraiensis changed in both genus and species which changed into the Chryseobacrterium genus from the Bacilus genus at $33^{\circ}C$.

Expression of Developmentally Regulated Promoter of Alkali-tolerant Bacillus sp. YA-I4 (알칼리 내성 Bacillus sp. YA-14에서 유래된 생육단계 조절 promoter의 발현)

  • 박영서;구본탁;박희경;유주현;김진만
    • Microbiology and Biotechnology Letters
    • /
    • v.18 no.4
    • /
    • pp.429-432
    • /
    • 1990
  • The promoter isolated from chromosomal DNA of an alkali-tolerant Bacillus sp. YA-14 was subcloned and biochemically characterized. Also the relationships between the promoter activity and sporulation were investigated. In alkali-tolerant Bacillus sp. and Bacillus subtilis, the activity of promoter began to increase at the onset of sporulation with the same mode, and repressed in the presence of 1.0% (wtv) glucose. Among five spoO genes, three epoO genes (spoOB, spoH, spoOJ) were required for promoter expression.

  • PDF

Effect of Dietary Bacillus sp. Inoculated Feather Meal on the erformance and Nutrient Utilization in Broiler (Bacillus sp. 접종 우무분이 Broiler 의 생산성과 영양소 이용율에 미치는 영향)

  • Kim, J.H.;Kim, S.C.;Ko, Y.D.
    • Journal of Animal Science and Technology
    • /
    • v.46 no.4
    • /
    • pp.603-612
    • /
    • 2004
  • This study was carried out to investigate the replacing fish meal or soybean meal effect of with feather meal or Bacillus sp. inoculated feather meal in broiler diets on the performances and nutrient utilization. One hundred and eighty broilers were randomly allotted to six dietary treatments(1) control, basal diet; (2) BFMl00, Fish meal replacing at 100% level with bacillus sp. inoculated feather meal; (3) BSM20, Soybean meal replacing at 20% level with bacillus sp. inoculated feather meal; (4) BFMl00+BSM20, Fish meal and soybean meal replacing at 100% level and 20% level with bacillus sp. inoculated feather meal, respectively; (5) GFMl00, Fish meal replacing at 100% level with general feather meal; and (6) GSM20, Soybean meal replacing at 20% level with general feather meal) in a 5 week feeding trial. In overall period, body weight gain of control was the highest(1,623g) and those of BFM 100, BFM 100+ BSM 20 and GFM 100 were 1,572g, 1,564g, and 1,078g, respectively. And that of GFM 100(1,078.3g) was the lowest(p<0.05) among treatments. Digestibility of dry matter for BFM 100+BSM 20(81.46%) was higher(p<0.05) than that for other treatments, and that of crude protein was the lowest (p<0.05). Digestibilities of organic matter were significantly(p<0.05) improved when Bacillus sp. inoculated feather meal was replaced at 100% level with fish meal in the basal diet. Methane and hydrogen sulfide gases from the feces were significantly(p<0.05) decreased in chicks fed the control, BFM 100 and GFM 100 diets, when observed after 3 weeks of feeding trials. Feed costs of the control and BFM 100 were 417 and 384 won, respectively but that of BSM 20 was 558 won. Therefore, replacement of fish meal with Bacillus sp. inoculated feather meal in the diets for chicks could be useful for economic production.

Effect of Tryptic Soy Broth (TSB) and Luria-Bertani (LB) Medium on Production of Subtilisin CP-1 from Bacillus sp. CP-1 and Characterization of Subtilisin CP-1 (Bacillus sp. CP-1 유래 subtilisin CP-1 생산에 있어 tryptic soy broth (TSB)와 Luria-Bertani(LB)배지가 미치는 영향 및 subtilisin CP-1의 특성)

  • Park, Chang-Su
    • Journal of Life Science
    • /
    • v.22 no.6
    • /
    • pp.823-827
    • /
    • 2012
  • A bacterial strain producing a fibrinolytic enzyme, subtilisin CP-1, was isolated from Doen-Jang, a Korean traditional fermentation food. Based on the analysis of gene sequence of 16S rRNA and biochemical analysis, the strain was identified as Bacillus sp. and named as Bacillus sp. CP-1. To investigate the effect of the medium on the production of fibrinolytic enzyme from Bacillus sp. CP-1, two commercial bacterial culture media, tryptic soy broth (TSB) and Luria-Bertani (LB), were applied to the cultivation of Bacillus sp. CP-1. The strain secreted only one proteolytic enzyme (subtilisin CP-1) in the culture broth. The molecular weight of subtilisin CP-1 was estimated to be 28 kDa. Subtilisin CP-1 was optimally active at pH 9.0 and $45^{\circ}C$, and exhibited high specificity for Meo-Suc-Arg-Pro-Tyr-pNA (S-2586), a synthetic chromogenic substrate for chymotrypsin. The first eight amino acid residues of the N-terminal sequence of the enzyme are AQSVPYGI; this sequence is identical to that of subtilisin NAT and E.

Characterization and Identification of Bacteria from Putrefying Soybean Curd (부패하는 두부로부터 미생물의 분리ㆍ동정 및 특성조사)

  • 주길재;허상선;최용희;이인구
    • Food Science and Preservation
    • /
    • v.5 no.3
    • /
    • pp.292-298
    • /
    • 1998
  • The isolates from putrefying soybean curd were identified as Acinetobacter calcoaceticus, Bacillus cereus, Bacillus sp., Cardiobacterium sp., Escherichia coli, Klebsiella pneumoniae, Pantoea sp., Salmonella typhimurium, Staphylococcus aureus, Xenorhabdus luminescens, Yersinia sp.. The existence percentages of the bacteria from putrefying soybean curd at room temperature storage were Bacillus cereus J55 23.57%, Xenorhabdus luminescens J48 22.73%, Acinetobacter calcoaceticus J61 22.26%, Klebsiella pneumoniae J62 21.25%, Salmonella typhimurium J51 2.87%, Pantoea sp. J57 2.65%, Bacillus sp. J58 1.43%, Cardiobacterium sp. J54 1.26%, Escherichia coli J53 1.20%, Staphvlococcus aureus J6O 0.93%, Yersinia sp. J50 0.05%, respectively. Four out of eleven bacteria as B. cereu J55, X. luminescens J48, Ac. calcoaceticus J61, Kl. pneumoniae J62 putrefied soybean curd and those bacteria produce amylase or proteinase as a extracellular enzyme. But S. typhimurium J51, Pantoea sp. J57, Bacillus sp. J58, Cardiobacterium sp. J54, E. coli 153, St. aureus J60, Yersinia sp. J50 were not putrefied soybean curd. The isolates detected to resistant on various antimicrobial agents. The majority were resistant to aminoside antiboitics as amicacin, gentamicin, tobramycin and were susceptible to ${\beta}$-lactamine antibiotics as penicillin G, oxacillin, cephalothin cefazolin, cefamandole.

  • PDF

A Thermostable Protease Produced from Bacillus sp. JE 375 Isolated from Korean Soil (한국의 토양으로부터 내열성 단백질 분해효소를 생산하는 Bacillus sp. JE 375의 선별)

  • Kim, Ji-Eun;Bai, Dong-Hoon
    • Korean Journal of Food Science and Technology
    • /
    • v.38 no.3
    • /
    • pp.419-426
    • /
    • 2006
  • A thermophilic microorganism, strain JE 375, which produces a thermostable protease, was isolated from soil and compost in Korea. This gram-positive, rod-shaped, catalase positive, motility positive, and hemolysis ${\beta}$ containing organism was implicated in glucose fermentation, mannitol fermentation, xylose oxidation, aerobic activity and spore formation. The color of the colony was yellowish white. The temperature range for growth at pH 6.5 was between 55 and $70^{\circ}C$, with an optimum growth temperature of $65^{\circ}C$. This result confirmed the strain JE 375 as a thermophilic microorganism. The enzyme was produced aerobically at $65^{\circ}C$ during 20 hr in a medium (pH 6.5) containing 1% trypton. 1% maltose, 0.5% yeast extract and 1% NaCl. The 16S rDNA of strain JE 375 had 97.6% sequence similarity with the 16S rDNA of Bacillus caldoxyloyticus. On the basis of biochemical and physiological properties and phylogenetic analysis, we named the isolated strain as Bacillus sp. JE 375. The thermostable protease from Bacillus sp. JE 375 had been partially purified and characterized. The molecular weight of the enzyme was deduced from SDS-PAGE and gel chromatography as 55 kDa and its optimal temperature was $60^{\circ}C$. The enzyme showed its highest activity at pH 7.5 and was stable from pH 7.0 to 8.0.

Comparison of Antifungal Activity, Plant Growth Promoting Activity, and Mineral-Solubilizing Ability of Bacillus sp. Isolated from Rhizosphere Soil and Root (근권 토양과 뿌리로부터 분리된 Bacillus sp.의 항진균 활성, 식물 생장 촉진 활성 및 미네랄 가용화능 비교)

  • Kim, Hee Sook;Oh, Ka-Yoon;Lee, Song Min;Kim, Ji-Youn;Lee, Kwang Hui;Lee, Sang-Hyeon;Jang, Jeong Su
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.4
    • /
    • pp.576-586
    • /
    • 2021
  • The purpose of this study was to evaluate the antifungal activity, plant-growth-promoting activity, and mineral solubilization ability of 10 species of phytopathogenic fungi to select a Bacillus sp. from rhizosphere soils and roots that can be used as a microbial agent. The antifungal activity for phytopathogenic fungi varied based on the Bacillus sp. Among the selected strains, DDP4, DDP16, DDP148, SN56, and SN95 exhibited antifungal activity for nine or more species of phytopathogenic fungi. Regarding nitrogen-fixation ability, all Bacillus sp. showed similar levels of activity, and siderophore production ability was relatively high in ANG42 and DDP427. The indole-3-acetic acid production abilities were in the range of 1.83-67.91 ㎍/ml, with variations in activity based on the Bacillus sp. One strain with a high activity was selected from each species, and their mineral solubilization abilities were examined. Most Bacillus sp. could solubilize phosphoric acid and calcium carbonate, and DDP148 and SN56 could solubilize silicon and zinc, respectively. These results suggested that Bacillus sp. can be considered potential multi-purpose microbial agents for plant growth promotion and disease prevention.