• Title/Summary/Keyword: Bacillus sp. P16

Search Result 129, Processing Time 0.019 seconds

Antimicrobial activities of Burkholderia sp. strains and optimization of culture conditions (Burkholderia sp. OS17의 항균활성 증진을 위한 배양최적화)

  • Nam, Young Ho;Choi, Ahyoung;Hwang, Buyng Su;Chung, Eu Jin
    • Korean Journal of Microbiology
    • /
    • v.54 no.4
    • /
    • pp.428-435
    • /
    • 2018
  • In this study, we isolated and identified bacteria from freshwater and soil collected from Osang reservoir, to screen antimicrobial bacteria against various pathogenic bacteria. 38 strains were isolated and assigned to the class Proteobacteria (22 strains), Actinobacteria (7 strains), Bacteroidets (6 strains), and Firmicutes (3 strains) based on 16S rRNA gene sequence analysis. Among them, strain OS17 showed a good growth inhibition against 5 methicillin-resistant Staphylococcus aureus subsp. aureus strains and Bacillus cereus, Bacillus subtilis, Filobasidium neoformans. As a result of the 16S rRNA gene sequence analysis, strain OS17 show the high similarity with Burkholderia ambifaria $AMMD^T$, B. diffusa $AM747629^T$, B. tettitorii $LK023503^T$ 99.8%, 99.7%, 99.6%, respectively. We investigated cell growth and antimicrobial activity according to commercial culture medium, temperature, pH for culture optimization of strain OS17. Optimal conditions for growth and antimicrobial activity in strain OS17 were found to be: YPD medium, $35^{\circ}C$ and pH 6.5. When the strain was cultured in LB, NB, TSB, R2A media at $20^{\circ}C$ and $25^{\circ}C$, the antimicrobial activity did not show. Culture filtrate of strain OS17 showed antimicrobial activity against 5 MRSA strains, Bacillus cereus, Bacillus subtilis, and Filobasidium neoformans with inhibition zones from 2 to 8 mm. Optimal reaction time was 48 h in YPD medium, 100 rpm and 0.3 vvm in 2 L-scale fed-batch fermentation process for antimicrobial activity. Culture optimization of strain OS17 can be improved on antimicrobial activity. Therefore, the antimicrobial activity of Burkholderia sp. OS17 had potential as antibiotics for pathogens including MRSA.

Proteomic Analysis of Global Changes in Protein Expression During Exposure of Gamma Radiation in Bacillus sp. HKG 112 Isolated from Saline Soil

  • Gupta, Anil Kumar;Pathak, Rajiv;Singh, Bharat;Gautam, Hemlata;Kumar, Ram;Kumar, Raj;Arora, Rajesh;Gautam, Hemant K.
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.6
    • /
    • pp.574-581
    • /
    • 2011
  • A Gram-positive bacterium was isolated from the saline soils of Jangpura (U.P.), India, and showed high-level of radiation-resistant property and survived upto 12.5 kGy dose of gamma radiation. The 16S rDNA sequence of this strain was examined, identified as Bacillus sp. strain HKG 112, and was submitted to the NCBI GenBank (Accession No. GQ925432). The mechanism of radiation resistance and gene level expression were examined by proteomic analysis of whole-cell extract. Two proteins, 38 kDa and 86.5 kDa excised from SDS-PAGE, which showed more significant changes after radiation exposure, were identified by MALDI-TOF as being flagellin and S-layer protein, respectively. Twenty selected 2-DE protein spots from the crude extracts of Bacillus sp. HKG 112, excised from 2- DE, were identified by liquid chromatography mass spectrometry (LC-MS) out of which 16 spots showed significant changes after radiation exposure and might be responsible for the radiation resistance property. Our results suggest that the different responses of some genes under radiation for the expression of radiation-dependent proteins could contribute to a physiological advantage and would be a significant initial step towards a fullsystem understanding of the radiation stress protection mechanisms of bacteria in different environments.

Isolation of a Novel Gellan-Depolymerizing Bacillus sp. Strain YJ-1

  • Jung, Yu-Jin;Park, Cheon-Seok;Lee, Hyeon-Gyu;Cha, Jae-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.12
    • /
    • pp.1868-1873
    • /
    • 2006
  • A novel microorganism that could degrade high molecular weight gellan was screened and isolated from soil. On gellan plate, the microorganism grew well and completely liquefied the plate. The gellan-degrading microorganism was isolated by pure culture on glucose and nutrient agar medium afterwards. The 16S rDNA sequence analysis and biochemical tests using an API 50CHB/20E kit revealed that the strain belonged to Bacillus sp. The isolate, named as Bacillus sp. YJ-1, showed optimum gellan-degrading activity in 0.5% gellan medium at pH 7.5 and 37$^{\circ}C$. The activity was measured and evaluated by the thiobarbituric acid and thin-layer chromatography method. Mass spectrometry revealed that the major gellan.. depolymerized product was an unsaturated tetrasaccharide consisting of $\Delta$4,5-glucuronic acid-(1$\rightarrow$4 )-$\beta$-D-glucose-(1$\rightarrow$4)- $\alpha$-L-rhamnose-(1$\rightarrow$3)-$\beta$-D-glucose, which is a dehydrated repeating unit of gellan, thus the enzyme was identified as gellan lyase. When the gellan was present in the medium, the gellan-degrading activity was much higher than that in glucose-grown cells. These results indicate that in the presence of gellan, Bacillus sp. YJ-1 is able to metabolize the gellan by inducing gellan-degrading enzymes that can degrade gellan into small molecular weight oligosaccharides, and then the gellan. depolymerized products are taken up by the cells and utilized by intracellular enzymes.

Screening of an Antagonistic Bacterium for Control of Red-pepper Anthracnose, Colletotrichum gloeosporioides (고추탄저병균 Colletotrichum gloeosporioides의 방제를 위한 길항 미생물의 분리 및 항진균 활성)

  • Park Sung-Min;Jung Hyuck-Jun;Yu Tae-Shick
    • Journal of Life Science
    • /
    • v.16 no.3 s.76
    • /
    • pp.420-426
    • /
    • 2006
  • Bacillus sp. KMU-991 was isolated from Oslo city soils at Norway and shown a strong antifungal activity on red-pepper anthracnose, Colletotrichum gloeosporioides. Bacillus sp. KMU-991 produced a maximum level of antifungal substrate under aerobic incubation at $30^{\circ}C$, 180 rpm for 48 hours in TSB medium(initial pH 7.0) containing 1.0% mannitol and 1.0% ammonium chloride. Precipitate of culture broth by $30{\sim}60%$ ammonium sulfate precipitation exhibited strong antifungal activity against C. gloeosporioides KACC 40804. Butanol extract of cultured broth also shown fungal growth inhibitory activity against Fusarium oxysporum f. sp. radicus-lycopersici KACC 40537, Rhizoctonia solani AG-4 KACC 40142, Botrytis cinerea KACC 40573, Colletotrichum orbiculare KACC 40808, and Phytophthora cambivora KACC 40160 by agar diffusion method.

Expression and Purification of Transmembrane Protein MerE from Mercury-Resistant Bacillus cereus

  • Amin, Aatif;Sarwar, Arslan;Saleem, Mushtaq A.;Latif, Zakia;Opella, Stanley J.
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.2
    • /
    • pp.274-282
    • /
    • 2019
  • Mercury-resistant ($Hg^R$) bacteria were isolated from heavy metal polluted wastewater and soil collected near to tanneries of district Kasur, Pakistan. Bacterial isolates AZ-1, AZ-2 and AZ-3 showed resistance up to $40{\mu}g/ml$ against mercuric chloride ($HgCl_2$). 16S rDNA ribotyping and phylogenetic analysis were performed for the characterization of selected isolates as Bacillus sp. AZ-1 (KT270477), Bacillus cereus AZ-2 (KT270478) and Bacillus cereus AZ-3 (KT270479). Phylogenetic relationship on the basis of merA nucleotide sequence confirmed 51-100% homology with the corresponding region of the merA gene of already reported mercury-resistant Gram-positive bacteria. The merE gene involved in the transportation of elemental mercury ($Hg^0$) via cell membrane was cloned for the first time into pHLV vector and transformed in overexpressed C43(DE3) E. coli cells. The recombinant plasmid (pHLMerE) was expressed and the native MerE protein was obtained after thrombin cleavage by size exclusion chromatography (SEC). The purification of fusion/recombinant and native protein MerE by Ni-NTA column, dialysis and fast protein liquid chromatography (FPLC/SEC) involved unfolding/refolding techniques. A small-scale reservoir of wastewater containing $30{\mu}g/ml$ of $HgCl_2$ was designed to check the detoxification ability of selected strains. It resulted in 83% detoxification of mercury by B. cereus AZ-2 and B. cereus AZ-3, and 76% detoxification by Bacillus sp. AZ-1 respectively (p < 0.05).

Antifungal Activity of Bacillus sp. BCNU 2003 against the Human Pathogenic Fungi (인체 병원성 진균에 대한 Bacillus sp. BCNU 2003의 항진균 효과)

  • Choi, Hye-Jung;Yang, Uk-Hee;Kim, Ya-Ell;Choi, Yeon-Hee;Ahn, Cheol-Soo;Jeong, Young-Kee;Kim, Dong-Wan;Joo, Woo-Hong
    • Journal of Life Science
    • /
    • v.20 no.2
    • /
    • pp.269-274
    • /
    • 2010
  • An antifungal antibiotic-producing strain, BCNU 2003, was isolated from forest soil in Korea. The morphological and physiological characters, and 16S rRNA sequences analysis of strain BCNU 2003 identified this strain as Bacillus genus. The Bacillus sp. BCNU 2003 showed strong antifungal activities against Aspergillus niger, Trichophyton mentagrophytes and Trichophyton rubrum with inhibition ranging from 62.05 to 63.49% by using dual culture technique. Bacillus sp. BCNU 2003 produced a maximum level of antifungal substances under aerobic incubation at 28oC and pH 6.5-7.2 for 6 days in LB broth. Ethyl acetate extract of the cultured broth showed strong antifungal activity and a broad antifungal spectrum against various pathogenic fungi. The minimum inhibitory concentration (MIC) values for its active extracts ranged between 0.0625 mg/ml and 1 mg/ml. In addition, Bacillus sp. BCNU 2003 was determined to have the ability to produce enzymes such as amylase, protease, gelatinase and catalase.

Isolation and Characterization of Acid Protease Produced by Staphylococcus sp. CB2-3 from Digestive Organ of Harmonia axyridis (무당벌레 소화기관으로부터 산성 단백질 분해효소를 생산하는 Staphylococcus sp. CB2-3의 분리 및 특성)

  • Kim, Se-Jong;Whang, Kyung-Sook
    • Korean Journal of Microbiology
    • /
    • v.47 no.3
    • /
    • pp.255-262
    • /
    • 2011
  • Six protein-degrading bacteria were isolated from digestive organ of Harmonia axyridis. These isolates were categorized as Staphylococcus sciuri subsp. sciuri (3 strains), Bacillus subtilis (1 strain), and Bacillus thuringiensis (2 strains) by 16S rRNA gene sequence analysis. The Staphylococcus sp. CB2-3 was selected as a protease-producing bacterium which showed the highest protease activity of 58.5 U/ml at the pH 5.0 medium. The optimal pH and temperature of protease activity were pH 5.0 and $40^{\circ}C$, respectively. This acid protease had a relatively high stability of 80% between $30-50^{\circ}C$ at broad temperature range. The opimal medium compositions of carbon, nitrogen and mineral source for cell growth and protease activity were investigated. When sorbitol (0.5%) was used as carbon source, enzyme activity was increased about 2 times than that of the basal medium. When skim milk (0.5%) was used as nitrogen source, activity was increased about 2.5 times than that of the control. Cell growth and enzyme activity were increased by mineral source such as KCl, $K_2HPO_4$, $FeSO_4$, but was completely inhibited by divalent ions such as $Co^{2+}$, $Zn^{2+}$, $Mn^{2+}$, $Cu^{2+}$.

Suppression of Fusarium Wilt Caused by Fusarium oxysporum f. sp. lactucae and Growth Promotion on Lettuce Using Bacterial Isolates

  • Yadav, Dil Raj;Adhikari, Mahesh;Kim, Sang Woo;Kim, Hyun Seung;Lee, Youn Su
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.9
    • /
    • pp.1241-1255
    • /
    • 2021
  • This study was carried out to explore a non-chemical strategy for enhancing productivity by employing some antagonistic rhizobacteria. One hundred eighteen bacterial isolates were obtained from the rhizospheric zone of various crop fields of Gangwon-do, Korea, and screened for antifungal activity against Fusarium wilt (Fusarium oxysporum f. sp. lactucae) in lettuce crop under in vitro and in vivo conditions. In broth-based dual culture assay, fourteen bacterial isolates showed significant inhibition of mycelial growth of F. oxysporium f. sp. lactucae. All of the antagonistic isolates were further characterized for the antagonistic traits under in vitro conditions. The isolates were identified on the basis of biochemical characteristics and confirmed at their species level by 16S rRNA gene sequencing analysis. Arthrobacter sulfonivorans, Bacillus siamensis, Bacillus amyloliquefaciens, Pseudomonas proteolytica, four Paenibacillus peoriae strains, and Bacillus subtilis were identified from the biochemical characterization and 16S rRNA gene sequencing analysis. The isolates EN21 and EN23 showed significant decrease in disease severity on lettuce compared to infected control and other bacterial treatments under greenhouse conditions. Two bacterial isolates, EN4 and EN21, were evaluated to assess their disease reduction and growth promotion in lettuce in field conditions. The consortium of EN4 and EN21 showed significant enhancement of growth on lettuce by suppressing disease caused by F. oxysporum f. sp. lactucae respectively. This study clearly indicates that the promising isolates, EN4 (P. proteolytica) and EN21 (Bacillus siamensis), can be commercialized and used as biofertilizer and/or biopesticide for sustainable crop production.

Identification of Alkalophilic Bacillus sp. S-1013 Producing Non-Cariogenicity Sugar Fuc($1{\to}4$)gaINAc($2{\to}6$)NeuAc and Optimization of Culture Condition for Its Production (비우식성 당 Fuc($1{\to}4$)gaINAc($2{\to}6$)NeuAc를 생산하는 호알칼리성 Bacillus sp. S-1013의 동정 및 생산조건의 최적화)

  • Ryu Il-Hwan;Kim Sun-Sook;Lee Kap-Sang;Lee Eun-Sook
    • Microbiology and Biotechnology Letters
    • /
    • v.34 no.3
    • /
    • pp.235-243
    • /
    • 2006
  • The study was performed to identification of producing microbe Non-Cariogenicity Sugar (NCS; Fuc($1{\to}4$) gaINAc($2{\to}6$)NeuAc) with anti-caries activity, and to optimization of production condition. A typical strain which produced the NCS was identified alkalophilic Bacillus sp. S-1013 through the results of morphological, biochemical and chemotaxonomic characteristics and 16S rDNA sequencing. The optimal medium composition for the maximal production of the NCS from alkalophilic Bacillus sp. S-1013 was as follow: soluble starch 30 g, dextrin 15 g, yeast extract 5 g, peptone 10 g, $K_{2}HPO_4$ 2 g in a liter of distilled water. Optimal temperature and pH were 25 and 11.0, respectively. The highest production of NCS was shown 60 hrs cultivation using the optimal medium, and then NCS productivity and dry cell weight of culture broth increased 4.24 and 2.67 time than initial medium, respectively.

Large-Scale Purification of Protease Produced by Bacillus sp. from Meju by Consecutive Polyethylene Glycol/Potassium Phosphate Buffer Aqueous Two-Phase System

  • Cho, Seong-Jun;Kim, Chan-Hwa;Yim, Moo-Hyun;Lee, Cherl-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.4
    • /
    • pp.498-503
    • /
    • 1999
  • Protease produced from Bacillus sp. FSE-68 was isolated from Meju, a Korean fermented soybean starter, and was purified by a two-consecutive aqueous two-phase system. The change of partition coefficient (K) in the polyethylene glycol (PEG)/potassium phosphate buffer (PPB) aqueous two-phase system was measured at different pHs (6.0- 9.2), PPB concentrations (8-12%), and temperatures (4 and $20^{\circ}C$). As the PPB concentration in the aqueous two-phase system increased, the protease concentration in the top phase (PEG-rich phase) increased, thereby enhancing the partition coefficient. The minimum partition coefficient of the protease was achieved at pH 7.0, whereas that of the total protein was at pH 6.0. The biggest difference in partition coefficients of total protein and protease occurred at pH 6.0. It was interesting to note that the partition coefficient of protease decreased as the temperature increased. The optimum condition of the primary aqueous two-phase extraction of Bacillus sp. FSE-68 was pH 6.0, 14% (w/w) PPB, and 16% (w/w) PEG at $4^{\circ}C$, and the crude enzyme concentration in this system was 50% (w/w). The protease, which was concentrated in the top phase, was further mixed with 15% (w/w) PPB (pH 7.0) in the ratio of 1:1 at $20^{\circ}C$ to elute the bottom phase (PPB-rich phase). Using these steps, the purification fold achieved was 9.2 with a 44.7% yield.

  • PDF