DOI QR코드

DOI QR Code

Expression and Purification of Transmembrane Protein MerE from Mercury-Resistant Bacillus cereus

  • Amin, Aatif (Department of Microbiology and Molecular Genetics, University of the Punjab) ;
  • Sarwar, Arslan (Department of Microbiology, Faculty of Life Sciences, University of Central Punjab) ;
  • Saleem, Mushtaq A. (Department of Microbiology, Faculty of Life Sciences, University of Central Punjab) ;
  • Latif, Zakia (Department of Microbiology and Molecular Genetics, University of the Punjab) ;
  • Opella, Stanley J. (Department of Chemistry and Biochemistry, University of California)
  • Received : 2017.04.28
  • Accepted : 2017.08.04
  • Published : 2019.02.28

Abstract

Mercury-resistant ($Hg^R$) bacteria were isolated from heavy metal polluted wastewater and soil collected near to tanneries of district Kasur, Pakistan. Bacterial isolates AZ-1, AZ-2 and AZ-3 showed resistance up to $40{\mu}g/ml$ against mercuric chloride ($HgCl_2$). 16S rDNA ribotyping and phylogenetic analysis were performed for the characterization of selected isolates as Bacillus sp. AZ-1 (KT270477), Bacillus cereus AZ-2 (KT270478) and Bacillus cereus AZ-3 (KT270479). Phylogenetic relationship on the basis of merA nucleotide sequence confirmed 51-100% homology with the corresponding region of the merA gene of already reported mercury-resistant Gram-positive bacteria. The merE gene involved in the transportation of elemental mercury ($Hg^0$) via cell membrane was cloned for the first time into pHLV vector and transformed in overexpressed C43(DE3) E. coli cells. The recombinant plasmid (pHLMerE) was expressed and the native MerE protein was obtained after thrombin cleavage by size exclusion chromatography (SEC). The purification of fusion/recombinant and native protein MerE by Ni-NTA column, dialysis and fast protein liquid chromatography (FPLC/SEC) involved unfolding/refolding techniques. A small-scale reservoir of wastewater containing $30{\mu}g/ml$ of $HgCl_2$ was designed to check the detoxification ability of selected strains. It resulted in 83% detoxification of mercury by B. cereus AZ-2 and B. cereus AZ-3, and 76% detoxification by Bacillus sp. AZ-1 respectively (p < 0.05).

Keywords

References

  1. Steenhuisen F, Wilson SJ. 2015. Identifying and characterizing major emission point sources as a basis for geospatial distribution of mercury emissions inventories. Atmos. Environ. 112: 167-177. https://doi.org/10.1016/j.atmosenv.2015.04.045
  2. Santos-Gandelman JF, Giambiagi-deMarval M, Muricy G, Barkay T, Laport MS. 2014. Mercury and methylmercury detoxification potential by sponge-associated bacteria. Antonie Leeuwenhoek 106: 585-590. https://doi.org/10.1007/s10482-014-0224-2
  3. Abbas Z, Chaudary MN, Raza A, Mehmood A. 2012. Toxicity of mercury in different samples (water and soils) and its exposure in pakistan. Sci. Int. 24: 421-429.
  4. Sedlmeier R, Altenbuchner J. 1992. Cloning and DNA sequence analysis of the mercury resistance genes of Streptomyces lividans. Mol. Gen. Genet. 236: 76-85. https://doi.org/10.1007/BF00279645
  5. Nakamura K, Silver S. 1994. Molecular analysis of mercury-resistant Bacillus isolates from sediment of Minamata Bay, Japan. Appl. Environ. Microbiol. 60: 4596-4599. https://doi.org/10.1128/AEM.60.12.4596-4599.1994
  6. Bogdanova E, Bass I, Minakhin L, Petrova M, Mindlin S, Volodin A, et al. 1998. Horizontal spread of mer operons among Gram-positive bacteria in natural environments. Microbiology 144: 609-620. https://doi.org/10.1099/00221287-144-3-609
  7. Lund PA, Ford SJ, Brown NL. 1986. Transcriptional regulation of the mercury-resistance genes of transposon Tn501. J. Gen. Microbiol. 132: 465-480.
  8. Moore MJ, Distefano MD, Zydowsky LD, Cummings RT, Walsh CT. 1990. Organomercurial lyase and mercuric ion reductase: nature's mercury detoxification catalysts. Acc. Chem. Res. 23: 301-308. https://doi.org/10.1021/ar00177a006
  9. Huang CC, Narita M, Yamagata T, Endo G. 1999. Identification of three merB genes and characterization of a broad-spectrum mercury resistance module encoded by a class II transposon of Bacillus megaterium strain MB1. Gene 239: 361-366. https://doi.org/10.1016/S0378-1119(99)00388-1
  10. Hamlett N, Landale E, Davis B, Summers A. 1992. Roles of the Tn21 merT, merP, and merC gene products in mercury resistance and mercury binding. J. Bacteriol. 174: 6377-6385. https://doi.org/10.1128/jb.174.20.6377-6385.1992
  11. Barkay T, Miller SM, Summers AO. 2003. Bacterial mercury resistance from atoms to ecosystems. FEMS Microbiol. Rev. 27: 355-384. https://doi.org/10.1016/S0168-6445(03)00046-9
  12. Kiyono M, Sone Y, Nakamura R, Pan-Hou H, Sakabe K. 2009. The MerE protein encoded by transposon Tn21 is a broad mercury transporter in Escherichia coli. FEBS Lett. 583: 1127-1131. https://doi.org/10.1016/j.febslet.2009.02.039
  13. Baneyx F, Mujacic M. 2004. Recombinant protein folding and misfolding in Escherichia coli. Nat. Biotechnol. 22: 1399. https://doi.org/10.1038/nbt1029
  14. Li M, Su Z-G, Janson J-C. 2004. In vitro protein refolding by chromatographic procedures. Protein Expr. Purif. 33: 1-10. https://doi.org/10.1016/j.pep.2003.08.023
  15. Tsumoto K, Ejima D, Kumagai I, Arakawa T. 2003. Practical considerations in refolding proteins from inclusion bodies. Protein Expr. Purif. 28: 1-8. https://doi.org/10.1016/S1046-5928(02)00641-1
  16. Yamaguchi H, Miyazaki M. 2014. Refolding techniques for recovering biologically active recombinant proteins from inclusion bodies. Biomolecules 4: 235-251. https://doi.org/10.3390/biom4010235
  17. Bajorunaite E, Cirkovas A, Radzevicius K, Larsen KL, Sereikaite J, Bumelis V-A. 2009. Anti-aggregatory effect of cyclodextrins in the refolding process of recombinant growth hormones from Escherichia coli inclusion bodies. Int. J. Biol. Macromol. 44: 428-434. https://doi.org/10.1016/j.ijbiomac.2009.03.005
  18. Normand P. 1995. Utilisation des sequences 16S pour le positionnement phyletique d'un organisme inconnu. Oceanis 21: 31-56.
  19. Amin A, Latif Z. 2017. Screening of mercury-resistant and indole-3-acetic acid producing bacterial-consortium for growth promotion of Cicer arietinum L. J. Basic Microbiol. 57: 204-217. https://doi.org/10.1002/jobm.201600352
  20. Park SH, Das BB, Casagrande F, Tian Y, Nothnagel HJ, Chu M, et al. 2012. Structure of the chemokine receptor CXCR1 in phospholipid bilayers. Nature 491: 779. https://doi.org/10.1038/nature11580
  21. Cook GA, Stefer S, Opella SJ. 2011. Expression and purification of the membrane protein p7 from hepatitis C virus. J. Pept. Sci. 96: 32-40. https://doi.org/10.1002/bip.21453
  22. Amin A, Latif Z. 2017. Cloning, expression, isotope labeling, and purification of transmembrane protein MerF from mercury resistant Enterobacter sp. AZ-15 for NMR studies. Front. Microbiol. 8: 1250. https://doi.org/10.3389/fmicb.2017.01250
  23. Das BB, Park SH, Opella SJ. 2015. Membrane protein structure from rotational diffusion. Biochim. Biophys. Acta (BBA)-Biomembr. 1848: 229-245. https://doi.org/10.1016/j.bbamem.2014.04.002
  24. Elly CT. 1973. Dithizone procedure for mercury analysis. J. Water Pollut. Control Fed. 940-945.
  25. Humaira K, Mohammad J, Mohammad I. 2005. A simple spectrophotometric determination of trace level mercury using 1,5-diphenylthiocarbazone solubilized in micelle. Anal. Sci. 21: 507-512. https://doi.org/10.2116/analsci.21.507
  26. Chang JS, Huang JC. 1998. Selective adsorption/recovery of Pb, Cu, and Cd with multiple fixed beds containing immobilized bacterial biomass. Biotechnol. Prog. 14: 735-741. https://doi.org/10.1021/bp980070y
  27. Sathyavathi S, Manjula A, Rajendhran J, Gunasekaran P. 2013. Biosynthesis and characterization of mercury sulphide nanoparticles produced by Bacillus cereus MRS-1. Indian J. Exp. Biol. 51: 973-978.
  28. Santos-Gandelman JF, Cruz K, Crane S, Muricy G, Giambiagi-deMarval M, Barkay T, et al. 2014. Potential application in mercury bioremediation of a marine sponge-isolated Bacillus cereus strain Pj1. Curr. Microbiol. 69: 374-380. https://doi.org/10.1007/s00284-014-0597-5
  29. Dash HR, Das S. 2015. Bioremediation of inorganic mercury through volatilization and biosorption by transgenic Bacillus cereus BW-03 (PW-05). Int. Biodeterior. Biodegrad. 103: 179-185. https://doi.org/10.1016/j.ibiod.2015.04.022
  30. Ma C, Marassi FM, Jones DH, Straus SK, Bour S, Strebel K, et al. 2002. Expression, purification, and activities of fulllength and truncated versions of the integral membrane protein Vpu from HIV-1. Protein Sci. 11: 546-557. https://doi.org/10.1110/ps.37302
  31. Clark EDB. 2001. Protein refolding for industrial processes. Curr. Opin. Biotechnol. 12: 202-207. https://doi.org/10.1016/S0958-1669(00)00200-7
  32. Neely A, Garcia-Olivares J, Voswinkel S, Horstkott H, Hidalgo P. 2004. Folding of active calcium channel ${\beta}1b$-subunit by size-exclusion chromatography and its role on channel function. J. Biol. Chem. 279: 21689-21694. https://doi.org/10.1074/jbc.M312675200
  33. Han Y-G, Liu H-L, Zheng H-J, Li S-G, Bi R-C. 2004. Purification and refolding of human ${\alpha}5$-subunit (PSMA5) of the 20S proteasome, expressed as inclusion bodies in Escherichia coli. Protein Expr. Purif. 35: 360-365. https://doi.org/10.1016/j.pep.2004.01.013
  34. Ouellette T, Destrau S, Ouellette T, Zhu J, Roach JM, Coffman JD, et al. 2003. Production and purification of refolded recombinant human IL-7 from inclusion bodies. Protein Expr. Purif. 30: 156-166. https://doi.org/10.1016/S1046-5928(03)00134-7
  35. Sone Y, Nakamura R, Pan-Hou H, Sato MH, Itoh T, Kiyono M. 2013. Increase methylmercury accumulation in Arabidopsis thaliana expressing bacterial broad-spectrum mercury transporter MerE. AMB Express. 3: 52. https://doi.org/10.1186/2191-0855-3-52
  36. Park SH, Opella SJ. 2010. Triton X-100 as the "short-chain lipid" improves the magnetic alignment and stability of membrane proteins in phosphatidylcholine bilayers for oriented-sample solid-state NMR spectroscopy. J. Am. Chem. Soc. 132: 12552-12553. https://doi.org/10.1021/ja1055565
  37. Lu GJ, Son WS, Opella SJ. 2011. A general assignment method for oriented sample (OS) solid-state NMR of proteins based on the correlation of resonances through heteronuclear dipolar couplings in samples aligned parallel and perpendicular to the magnetic field. J. Magn. Reson. 209: 195-206. https://doi.org/10.1016/j.jmr.2011.01.008
  38. Glendinning K, Macaskie L, Brown N. 2005. Mercury tolerance of thermophilic Bacillus sp. and Ureibacillus sp. Biotechnol. Lett. 27: 1657-1662. https://doi.org/10.1007/s10529-005-2723-8
  39. Oehmen A, Fradinho J, Serra S, Carvalho G, Capelo J, Velizarov S, et al. 2009. The effect of carbon source on the biological reduction of ionic mercury. J. Hazard. Mater. 165: 1040-1048. https://doi.org/10.1016/j.jhazmat.2008.10.094
  40. Nakamura K, Hagimine M, Sakai M, Furukawa K. 1999. Removal of mercury from mercury-contaminated sediments using a combined method of chemical leaching and volatilization of mercury by bacteria. Biodegradation 10: 443-447. https://doi.org/10.1023/A:1008329511391
  41. Sinha A, Pant KK, Khare SK. 2012. Studies on mercury bioremediation by alginate immobilized mercury tolerant Bacillus cereus cells. Int. Biodeterior. Biodegradation 71: 1-8. https://doi.org/10.1016/j.ibiod.2011.12.014
  42. Tamura K, Nei M, Kumar S. 2004. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc. Natl. Acad. Sci. USA 101: 11030-11035. https://doi.org/10.1073/pnas.0404206101

Cited by

  1. Interactions of SARS-CoV-2 envelope protein with amilorides correlate with antiviral activity vol.17, pp.5, 2019, https://doi.org/10.1371/journal.ppat.1009519
  2. Biodetoxification mercury by using a marine bacterium Marinomonas sp. RS3 and its merA gene expression under mercury stress vol.205, 2019, https://doi.org/10.1016/j.envres.2021.112452