• Title/Summary/Keyword: Bacillus protease

Search Result 435, Processing Time 0.034 seconds

Antifungical Activity of Autochthonous Bacillus subtilis Isolated from Prosopis juliflora against Phytopathogenic Fungi

  • Abdelmoteleb, Ali;Troncoso-Rojas, Rosalba;Gonzalez-Soto, Tania;Gonzalez-Mendoza, Daniel
    • Mycobiology
    • /
    • v.45 no.4
    • /
    • pp.385-391
    • /
    • 2017
  • The ability of Bacillus subtilis, strain ALICA to produce three mycolytic enzymes (chitinase, ${\beta}$-1,3-glucanase, and protease), was carried out by the chemical standard methods. Bacillus subtilis ALICA was screened based on their antifungal activity in dual plate assay and cell-free culture filtrate (25%) against five different phytopathogenic fungi Alternaria alternata, Macrophomina sp., Colletotrichum gloeosporioides, Botrytis cinerea, and Sclerotium rolfesii. The B. subtilis ALICA detected positive for chitinase, ${\beta}$-1,3-glucanase and protease enzymes. Fungal growth inhibition by both strain ALICA and its cell-free culture filtrate ranged from 51.36% to 86.3% and 38.43% to 68.6%, respectively. Moreover, hyphal morphological changes like damage, broken, swelling, distortions abnormal morphology were observed. Genes expression of protease, ${\beta}$-1,3-glucanase, and lipopeptides (subtilosin and subtilisin) were confirmed their presence in the supernatant of strain ALICA. Our findings indicated that strain ALICA provided a broad spectrum of antifungal activities against various phytopathogenic fungi and may be a potential effective alternative to chemical fungicides.

Purification and Characterization of Protease from Bacillus subtilis PANH765 (Bacillus subtilis PANH765가 생산하는 Protease의 정제 및 특성)

  • 이창호;우철주;베동호;김관필
    • Food Science and Preservation
    • /
    • v.10 no.2
    • /
    • pp.246-251
    • /
    • 2003
  • Pretense produced by Bacillus subtilis PANH765 was purified from culture supernatant by using ammonium sulfate fractionation DEAE-cellulose ion exchange chromatography, and gel filtration with Sephacryl S 200 HR and Sepharose CL-6B. DEAE-cellulose ion exchange column chromatography, separated the pretense into one fraction. This fraction was further purified using Sephacryl S 200 HR and Sepharose CL-6B gel titration. The molecular mass of pretense was estimated to be 35.0 kDa by the SDS-PAGE and gel filtration using Sepharose CL-6B. The results indicated that the purified pretense are monomeric proteins. Specific activity and purification folds of pretense were 657 U/mg and 4.35, respectively. The optimum temperature, optimum pit stable at a temperature range and pH ranges for the purified protease were 65$^{\circ}C$, 7.05, 50 ∼ 75$^{\circ}C$ and 6.0 ∼ 7.5, respectively. The pretense activity was decreased by the presence of PMSF and DFP, which the protease activity was increased by the presence of Na$\^$+/, K$\^$+/, Mg$\^$2+/ and NH$_4$$\^$+/ ions.

Increased Production of an Alkaline Protease from Bacillus clausii I-52 by Chromosomal Integration (Bacillus clausii I-52의 Chromosomal Integration에 의한 Alkaline Protease의 생산성 향상)

  • Joo, Han-Seung;Park, Dong-Chul;Choi, Jang-Won
    • Journal of agriculture & life science
    • /
    • v.46 no.1
    • /
    • pp.163-176
    • /
    • 2012
  • TTo increase productivity of a strong extracellular alkaline protease (BCAP), stable strains of Bacillus clausii I-52 carrying another copy of BCAP gene in the chromosome were developed. Integrative vector, pHPS9-fuBCAP carrying BCAP promoter, ribosome binding site, signal sequence and active protease gene was constructed and transferred into B. clausii I-52, and integration of the constructed plasmid into chromosome was identified by PCR. An investigation was carried out on BCAP production by B. clausii I-52 and transformant C5 showing the highest relative activity of alkaline protease using submerged fermentation. Maximum enzyme activity was produced when cells were grown under the submerged fermentation conditions at $37^{\circ}C$ for 48 h with an aeration rate of 1 vvm and agitation rate of 650 rpm in a optimized medium (soybean meal 2%, wheat flour 1%, sodium citrate 0.5%, $K_2HPO_4$ 0.4%, $Na_2HPO_4$ 0.1%, NaCl 0.4%, $MgSO_47H_2O$ 0.01%, $FeSO_47H_2O$ 0.05%, liquid maltose 2.5%, $Na_2CO_3$ 0.6%). A protease yield of approximately 134,670U/ml was achieved using an optimized media, which show an increase of approximately 1.6-fold compared to that of non-transformant (83,960 U/ml). When the stability of transformant C5 was examined, the integrated plasmid pHPS9-fuBCAP was detected in the transformant after cultivation for 8 days, suggesting that it maintained stably in the chromosomal DNA of transformant C5.

Quality characteristics of popped rice Doenjang prepared with Bacillus subtilis strains (Bacillus subtilis 균주를 이용하여 제조한 팽화미 된장의 품질 특성)

  • Lee, Kyung Ha;Kim, Eun Ju;Choi, Hye Sun;Park, Shin Young;Kim, Jae Hyun;Song, Jin
    • Food Science and Preservation
    • /
    • v.22 no.4
    • /
    • pp.545-552
    • /
    • 2015
  • This study investigated the quality characteristics of popped rice Doenjang prepared with different Bacillus strains (Bacillus subtilis KACC 15935, and Bacillus subtilis HJ18-9). The changes in the enzyme activity (protease, cellulase, and ${\alpha}$-amylase), amino-type nitrogen and ammonia-type nitrogen contents, and the reducing sugar were investigated during the fermentation period. Enzymes such as protease, cellulase, and a-amylase plays an important role in the changes in composition of nutrients, and in flavor and taste of popped rice Doenjang. Protease activities of the popped rice deonjang fermented with different Bacillus strains (control, B. subtilis KACC 15935, and B. subtilis HJ18-9) was in the range of 171.77-185.97 unit/g at the beginning of fermentation, and there were no significant differences among the samples. On the other hand, the protease activity in popped rice Doenjang fermented with B. subtilis HJ18-9 increased significantly up to $248.77{\pm}4.53unit/g$ at the end of fermentation (p<0.05). Cellulase activity and a-amylase activity of popped rice Doenjang in HJ18-9 was higher than these of other samples. After 56 days of fermentation, amino-type nitrogen in popped rice deonjang fermented with control, B. subtilis KACC 15935, and B. subtilis HJ18-9 increased significantly up to $174.99{\pm}3.70$, $166.59{\pm}1.40$, $225.39{\pm}3.70mg%$, respectively (p<0.05). These results suggested that B. subtilis HJ18-9 was a suitable starter for the preparation of soybean paste.

Purification and Characterization of an Alkaline Protease from Bacillus licheniformis NS70

  • Kim, Young-Ok;Lee, Jung-Kee;Kim, Hyung-Kwoun;Park, Young-Seo;Oh, Tae-Kwang
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.1
    • /
    • pp.1-6
    • /
    • 1996
  • A bacterial strain NS70 producing an alkaline protease was isolated from soil samples taken near a hot spring and identified as Bacillus licheniformis by its morphological and physiological properties and cellular fatty acid analysis. The isolated alkaline protease was purified by ammonium sulfate fractionation, DEAE-, CM-, and Phenyl-Sepharose column chromatography. The molecular weight of the purified enzyme was estimated to be 32, 000 Da by sodium dodecylsulfate polyacrylamide gel electrophoresis. Its optimal pH and temperature for proteolytic activity against Hammarsten casein were 12 and $65^{\circ}C$, respectively. The enzyme was stable at alkaline pH range from 6.0 to 12.0, and fairly stable up to $65^{\circ}C$. The enzyme was inhibited by phenylmethylsulfonyl fluoride but not by EDTA and N-ethylmaleimide indicating that the enzyme is serine protease. Enzyme activity was markedly inhibited by $Hg^{2+}$ and $Cu^{2+}$. Autolytic phenomena were observed on purified protease NS70 but autolysis was reduced by the addtion of $Ca^{2+}$ ion or bovine serum albumin.

  • PDF

Whole genome sequence analyses of thermotolerant Bacillus sp. isolates from food

  • Phornphan Sornchuer;Kritsakorn Saninjuk;Pholawat Tingpej
    • Genomics & Informatics
    • /
    • v.21 no.3
    • /
    • pp.35.1-35.12
    • /
    • 2023
  • The Bacillus cereus group, also known as B. cereus sensu lato (B. cereus s.l.), is composed of various Bacillus species, some of which can cause diarrheal or emetic food poisoning. Several emerging highly heat-resistant Bacillus species have been identified, these include B. thermoamylovorans, B. sporothermodurans, and B. cytotoxicus NVH 391-98. Herein, we performed whole genome analysis of two thermotolerant Bacillus sp. isolates, Bacillus sp. B48 and Bacillus sp. B140, from an omelet with acacia leaves and fried rice, respectively. Phylogenomic analysis suggested that Bacillus sp. B48 and Bacillus sp. B140 are closely related to B. cereus and B. thuringiensis, respectively. Whole genome alignment of Bacillus sp. B48, Bacillus sp. B140, mesophilic strain B. cereus ATCC14579, and thermophilic strain B. cytotoxicus NVH 391-98 using the Mauve program revealed the presence of numerous homologous regions including genes responsible for heat shock in the dnaK gene cluster. However, the presence of a DUF4253 domain-containing protein was observed only in the genome of B. cereus ATCC14579 while the intracellular protease PfpI family was present only in the chromosome of B. cytotoxicus NVH 391-98. In addition, prophage Clp protease-like proteins were found in the genomes of both Bacillus sp. B48 and Bacillus sp. B140 but not in the genome of B. cereus ATCC14579. The genomic profiles of Bacillus sp. isolates were identified by using whole genome analysis especially those relating to heat-responsive gene clusters. The findings presented in this study lay the foundations for subsequent studies to reveal further insights into the molecular mechanisms of Bacillus species in terms of heat resistance mechanisms.

Nano-scale Proteomics Approach Using Two-dimensional Fibrin Zymography Combined with Fluorescent SYPRO Ruby Dye

  • Choi, Nack-Shick;Yoo, Ki-Hyun;Yoon, Kab-Seog;Maeng, Pil-Jae;Kim, Seung-Ho
    • BMB Reports
    • /
    • v.37 no.3
    • /
    • pp.298-303
    • /
    • 2004
  • In general, a SYPRO Ruby dye is well known as a sensitive fluorescence-based method for detecting proteins by one-or two-dimensional SDS-PAGE (1-DE or 2-DE). Based on the SYPRO Ruby dye system, the combined two-dimensional fibrin zymography (2-D FZ) with SYPRO Ruby staining was newly developed to identify the Bacillus sp. proteases. Namely, complex protein mixtures from Bacillus sp. DJ-4, which were screened from Doen-Jang (Korean traditional fermented food), showed activity on the zymogram gel. The gel spots on the SYPRO Ruby gel, which corresponded to the active spots showing on the 2-D FZ gel, were analyzed by a matrix-assisted laser desorption ionization time of flight (MALDI-TOF) mass spectrometric analysis. Five intracellular fibrinolytic enzymes of Bacillus sp. DJ-4 were detected through 2-D FZ. The gel spots on the SYPRO Ruby dye stained 2-D gel corresponding to 2-D FZ were then analyzed by MALID TOF MS. Three of the five gel spots proved to be quite similar to the ATP-dependent protease, extracellular neutral metalloprotease, and protease of Bacillus subtilis. Also, the extracellular proteases of Bacillus sp. DJ-4 employing this combined system were identified on three gels (e.g., casein, fibrin, and gelatin) and the proteolytic maps were established. This combined system of 2-D zymography and SYPRO Ruby dye should be useful for searching the specific protease from complex protein mixtures of many other sources (e.g., yeast and cancer cell lines).

Isolation of Bacillus sp. Producing Multi-enzyme and Optimization of Medium Conditions for Its Production Using Feedstuffs for Probiotics (Probiotics용 복합효소 분비 Bacillus sp.의 분리 및 원료사료를 이용한 균주 생산을 위한 배지 조건의 최적화)

  • 양시용;송민동;김언현;김창원
    • Microbiology and Biotechnology Letters
    • /
    • v.29 no.2
    • /
    • pp.110-114
    • /
    • 2001
  • Isolation of BacilLus sp. producing multi-enzyme and optimization of medium conditions for its production using feedstuffs for probiotics were carried out in this study. A bacterium isolated from natural resources, namely Bacillus subtilis 4-3, has multi-enzyme activity (phytase. cellulase, xylanasc, protease, and amylase. In the culture of B. subtilis 4-3 using soybean meal and rice bran. relatively low phytate degradation was noted using whereas high phytate degradability was observed with wheat bran (80.63%). The optimal composition of medium using feedstuffs was 1.0% (w/v) soybean meal and 2% (w/v) molasses to yield high cell growth.

  • PDF

Construction of Pretense-defective Mutant of Bacillus subtilis by Homologous DNA Recombination (상동성 유전자재조합을 이용한 단백질분해효소 비생산 바실러스균주의 구축)

  • Lee, Jin-Tae;An, Bong-Jeun
    • Food Science and Preservation
    • /
    • v.7 no.4
    • /
    • pp.414-417
    • /
    • 2000
  • Competent cell transformation of B. subtilis AC819 was carried out using phenotypic protease-defective(Npr-) DNA of B. subtilis MT-2. An obtained transformant, designated B. subtilis HL-1, was obtained by homologous DNA recombination. Phenotypes of B. subtilis HL-1 were characterized histidine requirement streptomycin-resistance, tetracyclin resistance and non-producing protease. Protoplast transformation frequency of B. subtilis HL-1 by plasmid pUB110 was higher than that of B. subtilis MT-2. From this result, B. subtilis HL-1 is useful for protease gene transformation and thermostable protease gene cloning as a host.

  • PDF

Characteristics and Action Pattern of Protease from Bacillus Subtilis Globigii CCKS-118 in Korean Traditional Soy Sauce (한국재래간장으로 부터 분리한 Bacillus subtilis globigii CCKS-118이 생성하는 pretense의 특성 및 작용양상)

  • Choi, Kwang-Soo;Cho, Young-Je;Lim, Sung-Il;Lee, Seon-Ho;Son, Jun-Ho;Choi, Hee-Jin;Lee, Hee-Duck;Choi, Cheong
    • Applied Biological Chemistry
    • /
    • v.39 no.6
    • /
    • pp.460-465
    • /
    • 1996
  • The production of bacterial protease and its characteristics were investigated with Bacillus subtilis globigii CCKS-118 which was isolated from Korean traditional soy sauce. The optimum culture condition of the strain for the production of alkaline protease was as follow : 2% soluble starch, 0.2% yeast extract, 0.1% $(NH_4)_2SO_4$, 0.2% $MgSO_4$, pH 7.5, $35^{\circ}C$ and 20h rs. The optimum pH and temperature for the enzyme action of alkaline protease producing Bacillus subtilis globigii CCKS-118 were pH 9.0 and $50^{\circ}C$, respectively. The enzyme was relatively stable at $pH\;6.0{\sim}9.0$ and at temperature below $40^{\circ}C$. The activity of the enzyme was inhibited by $Hg^{2+}$ whereas $Cu^{2+}$ gave rather activating effects on the enzyme activity. The enzyme was inhibited by phenylmethane-sulfonyl fluoride indicating serine pretense metal ion group are required for the enzyme activity. Km value was $1.242{\times}10^{-4}M$, $V_{max}$ value was $25.99\;{\mu}g/min$. This enzyme hydrolyzed casein more rapidly than the hemoglobin.

  • PDF