Browse > Article
http://dx.doi.org/10.5941/MYCO.2017.45.4.385

Antifungical Activity of Autochthonous Bacillus subtilis Isolated from Prosopis juliflora against Phytopathogenic Fungi  

Abdelmoteleb, Ali (Instituto de Ciencias Agricolas de la Universidad Autonoma de Baja California (ICA-UABC))
Troncoso-Rojas, Rosalba (Centro de Investigacion en Alimentacion y Desarrollo, A.C., Direccion de Tecnologia de Alimentos de Origen Vegetal)
Gonzalez-Soto, Tania (Centro de Investigacion en Alimentacion y Desarrollo, A.C., Direccion de Tecnologia de Alimentos de Origen Vegetal)
Gonzalez-Mendoza, Daniel (Instituto de Ciencias Agricolas de la Universidad Autonoma de Baja California (ICA-UABC))
Publication Information
Mycobiology / v.45, no.4, 2017 , pp. 385-391 More about this Journal
Abstract
The ability of Bacillus subtilis, strain ALICA to produce three mycolytic enzymes (chitinase, ${\beta}$-1,3-glucanase, and protease), was carried out by the chemical standard methods. Bacillus subtilis ALICA was screened based on their antifungal activity in dual plate assay and cell-free culture filtrate (25%) against five different phytopathogenic fungi Alternaria alternata, Macrophomina sp., Colletotrichum gloeosporioides, Botrytis cinerea, and Sclerotium rolfesii. The B. subtilis ALICA detected positive for chitinase, ${\beta}$-1,3-glucanase and protease enzymes. Fungal growth inhibition by both strain ALICA and its cell-free culture filtrate ranged from 51.36% to 86.3% and 38.43% to 68.6%, respectively. Moreover, hyphal morphological changes like damage, broken, swelling, distortions abnormal morphology were observed. Genes expression of protease, ${\beta}$-1,3-glucanase, and lipopeptides (subtilosin and subtilisin) were confirmed their presence in the supernatant of strain ALICA. Our findings indicated that strain ALICA provided a broad spectrum of antifungal activities against various phytopathogenic fungi and may be a potential effective alternative to chemical fungicides.
Keywords
Bacillus subtilis; Biocontrol; Lipopeptides; Mycolytic enzymes; Prosopis juliflora;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Cao Y, Xu Z, Ling N, Yuan Y, Yang X, Chen L, Shen B, Shen Q. Isolation and identification of lipopeptides produced by B. subtilis SQR 9 for suppressing Fusarium wilt of cucumber. Sci Hortic 2012;135:32-9.   DOI
2 Sadeghi HM, Rabbani M, Naghitorabi M. Cloning of alkalineprotease gene from Bacillus subtilis 168. Res Pharm Sci 2010;4:43-6.
3 Nielsen TH, Thrane C, Christophersen C, Anthoni U, Sorensen J. Structure, production characteristics and fungal antagonism of tensin: a new antifungal cyclic lipopeptide from Pseudomonas fluorescens strain 96.578. J Appl Microbiol 2000;89:992-1001.   DOI
4 Zhang D, Gao T, Li H, Lei B, Zhu B. Identification of antifungal substances secreted by Bacillus subtilis Z-14 that suppress Gaeumannomyces graminis var. tritici. Biocontrol Sci Technol 2017;27:237-51.   DOI
5 Tendulkar SR, Saikumari YK, Patel V, Raghotama S, MunshiTK, Balaram P, Chattoo BB. Isolation, purification andcharacterization of an antifungal molecule produced byBacillus licheniformis BC98, and its effect on phytopathogenMagnaporthe grisea. J Appl Microbiol 2007;103:2331-9.   DOI
6 Holguin-Pena RJ, Arcos FG. First report of gray mold in tomato caused by Botrytis cinerea in Baja California, Mexico. Plant Dis 2005;89:528.
7 Ashwini N, Srividya S. Potentiality of Bacillus subtilis as biocontrol agent for management of anthracnose disease of chilli caused by Colletotrichum gloeosporioides OGC1. 3 Biotech 2014;4:127-36.
8 Solanki MK, Singh RK, Srivastava S, Kumar S, Kashyap PL, Srivastava AK. Characterization of antagonistic-potential of two Bacillus strains and their biocontrol activity against Rhizoctonia solani in tomato. J Basic Microbiol 2015;55:82-90.   DOI
9 Saechow S, Thammasittirong A, Thammasittirong SN. The potential of Bacillus subtilis BAS114 for in vitro biocontrol of Fusarium oxysporum. Adv Environ Biol 2017;11:46-51.
10 Thakaew R, Niamsup H. Inhibitory activity of Bacillus subtilis BCC 6327 metabolites against growth of aflatoxigenic fungi isolated from bird chili powder. Int J Biosci Biochem Bioinforma 2013;3:27-32.
11 Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 1959;31:426-8.   DOI
12 Solanki MK, Robert AS, Singh RK, Kumar S, Pandey AK, Srivastava AK, Arora DK. Characterization of mycolytic enzymes of Bacillus strains and their bio-protection role against Rhizoctonia solani in tomato. Curr Microbiol 2012;65: 330-6.   DOI
13 Ruiz-Sanchez E, Mejia-Bautista MA, Serrato-Diaz A, Reyes- Ramirez A, Estrada-Giron Y, Valencia-Botin AJ. Antifungal activity and molecular identification of native strains of Bacillus subtilis. Agrociencia 2016;50:133-48.
14 Adame-Garcia J, Rodriguez-Guerra R, Iglesias-Andreu L, Ramos Prado JM, Luna-Rodriguez M. Molecular identification and pathogenic variation of Fusarium species isolated from Vanilla planifolia in Papantla Mexico. Bot Sci 2015;93:669-78.   DOI
15 Abdelmoteleb A, Troncoso-Rojas R, Tzintzum-Camacho O, Gonzalez-Mendoza D, Cecena Duran C, Grimaldo-Juarez O, Aviles-Marin M, Duran-Hernandez D. Biocontrol of Fusarium spp., causal agents of damping-off in cotton plants by native Bacillus subtilis isolated from Prosopis juliflora. Int J Agric Biol 2017;19:713-8.   DOI
16 Brants A, Earle ED. Transgenic tobacco cell cultures expressing a Trichoderma harzianum endochitinase gene release the enzyme into the medium. Plant Cell Rep 2001;20:73-8.   DOI
17 Jayashree S, Annapurna B, Jayakumar R, Sa T, Seshadri S. Screening and characterization of alkaline protease produced by a pink pigmented facultative methylotrophic (PPFM) strain, MSF 46. J Genet Eng Biotechnol 2014;12:111-20.   DOI
18 Trivedi P, Pandey A, Palni LM. In vitro evaluation of antagonistic properties of Pseudomonas corrugata. Microbiol Res 2008;163:329-36.   DOI
19 Mendez V, Avelar E, Morales A, Cervantes M, Araiza A, Gonzalez D. A rapid protocol for purification of total RNA for tissues collected from pigs at a slaughterhouse. Genet Mol Res 2011;10:3251-5.   DOI