• 제목/요약/키워드: Babol

검색결과 99건 처리시간 0.021초

The effect of RBS connection on energy absorption in tall buildings with braced tube frame system

  • Shariati, Mahdi;Ghorbani, Mostafa;Naghipour, Morteza;Alinejad, Nasrollah;Toghroli, Ali
    • Steel and Composite Structures
    • /
    • 제34권3호
    • /
    • pp.393-407
    • /
    • 2020
  • The braced tube frame system, a combination of perimeter frame and bracing frame, is one of the systems used in tall buildings. Due to the implementation of this system in tall buildings and the high rigidity resulting from the use of general bracing, providing proper ductility while maintaining the strength of the structure when exposing to lateral forces is essential. Also, the high stress at the connection of the beam to the column may cause a sudden failure in the region before reaching the required ductility. The use of Reduced Beam Section connection (RBS connection) by focusing stress in a region away from beam to column connection is a suitable solution to the problem. Because of the fact that RBS connections are usually used in moment frames and not tested in tall buildings with braced tube frames, they should be investigated. Therefore, in this research, three tall buildings in height ranges of 20, 25 and 30 floors were modeled and designed by SAP2000 software, and then a frame in each building was modeled in PERFORM-3D software under two RBS-free system and RBS-based system. Nonlinear time history dynamic analysis is used for each frame under Manjil, Tabas and Northridge excitations. The results of the Comparison between RBS-free and RBS-based systems show that the RBS connections increased the absorbed energy level by reducing the stiffness and increasing the ductility in the beams and structural system. Also, by increasing the involvement of the beams in absorbing energy, the columns and braces absorb less energy.

Evaluation of Human Papilloma Virus Infection in Patients with Esophageal Squamous Cell Carcinoma from the Caspian Sea Area, North of Iran

  • Yahyapour, Yousef;Shamsi-Shahrabadi, Mahmoud;Mahmoudi, Mahmoud;Siadati, Sepideh;Shahryar, Shefaei Shahryar;Shokri-Shirvani, Javad;Mollaei, Hamid;Monavari, Seyed Hamid Reza
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권4호
    • /
    • pp.1261-1266
    • /
    • 2012
  • Introduction: HPV has been found repeatedly in esophageal squamous cell carcinoma (ESCC) tissues. However, reported detection rates of HPV DNA in these tumors have varied markedly. Differences in detection methods, sample types, and geographic regions of sample origin have been suggested as potential causes of variation. We have reported that infection of HPV DNA in ESCC tumors depends on anatomical sites of esophagus of the patients from Mazandaran, north of Iran. Materials and Methods: HPV DNA was examined in 46 upper, 69 middle and 62 lower third anatomical sites of esophageal squamous cell carcinoma specimens collected from Mazandaran province in north Iran, near the Caspian Littoral as a region with high incidence of ESCC. HPV L1 DNA was detected using Qualitative Real time PCR and MY09/MY11 primers. Results: 28.3% of upper, 29% of middle and 25.8% of lower third of ESCC samples were positive for HPV DNA. 13.6% for males and 14.1% for females were HPV positive in all samples. Conclusions: HPV infection is about one third of ESCC in this area. Findings in this study increase the possibility that HPV is involved in esophageal carcinogenesis. Further investigation with a larger sample size is necessary.

Fracture resistance of upper central incisors restored with different posts and cores

  • Rezaei Dastjerdi, Maryam;Amirian Chaijan, Kamran;Tavanafar, Saeid
    • Restorative Dentistry and Endodontics
    • /
    • 제40권3호
    • /
    • pp.229-235
    • /
    • 2015
  • Objectives: To determine and compare the fracture resistance of endodontically treated maxillary central incisors restored with different posts and cores. Materials and Methods: Forty-eight upper central incisors were randomly divided into four groups: cast post and core (group 1), fiber-reinforced composite (FRC) post and composite core (group 2), composite post and core (group 3), and controls (group 4). Mesio-distal and bucco-lingual dimensions at 7 and 14 mm from the apex were compared to ensure standardization among the groups. Twelve teeth were prepared for crown restoration (group 4). Teeth in other groups were endodontically treated, decoronated at 14 mm from the apex, and prepared for posts and cores. Resin-based materials were used for cementation in groups 1 and 2. In group 3, composite was used directly to fill the post space and for core build-up. All samples were restored by standard metal crowns using glass ionomer cement, mounted at $135^{\circ}$ vertical angle, subjected to thermo-mechanical aging, and then fractured using a universal testing machine. Kruskal-Wallis and Mann-Whitney U tests were used to analyze the data. Results: Fracture resistance of the groups was as follows: Control (group 4) > cast post and core (group 1) > fiber post and composite core (group 2) > composite post and core (group 3). All samples in groups 2 and 3 fractured in restorable patterns, whereas most (58%) in group 1 were non-restorable. Conclusions: Within the limitations of this study, FRC posts showed acceptable fracture resistance with favorable fracture patterns for reconstruction of upper central incisors.

Diagnostic performance of artificial intelligence using cone-beam computed tomography imaging of the oral and maxillofacial region: A scoping review and meta-analysis

  • Farida Abesi ;Mahla Maleki ;Mohammad Zamani
    • Imaging Science in Dentistry
    • /
    • 제53권2호
    • /
    • pp.101-108
    • /
    • 2023
  • Purpose: The aim of this study was to conduct a scoping review and meta-analysis to provide overall estimates of the recall and precision of artificial intelligence for detection and segmentation using oral and maxillofacial cone-beam computed tomography (CBCT) scans. Materials and Methods: A literature search was done in Embase, PubMed, and Scopus through October 31, 2022 to identify studies that reported the recall and precision values of artificial intelligence systems using oral and maxillofacial CBCT images for the automatic detection or segmentation of anatomical landmarks or pathological lesions. Recall (sensitivity) indicates the percentage of certain structures that are correctly detected. Precision (positive predictive value) indicates the percentage of accurately identified structures out of all detected structures. The performance values were extracted and pooled, and the estimates were presented with 95% confidence intervals(CIs). Results: In total, 12 eligible studies were finally included. The overall pooled recall for artificial intelligence was 0.91 (95% CI: 0.87-0.94). In a subgroup analysis, the pooled recall was 0.88 (95% CI: 0.77-0.94) for detection and 0.92 (95% CI: 0.87-0.96) for segmentation. The overall pooled precision for artificial intelligence was 0.93 (95% CI: 0.88-0.95). A subgroup analysis showed that the pooled precision value was 0.90 (95% CI: 0.77-0.96) for detection and 0.94 (95% CI: 0.89-0.97) for segmentation. Conclusion: Excellent performance was found for artificial intelligence using oral and maxillofacial CBCT images.

Nitric oxide, 8-hydroxydeoxyguanosine, and total antioxidant capacity in human seminal plasma of infertile men and their relationship with sperm parameters

  • Gholinezhad, Maryam;Aliarab, Azadeh;Abbaszadeh-Goudarzi, Ghasem;Yousefnia-Pasha, Yousefreza;Samadaian, Niusha;Rasolpour-Roshan, Korush;Aghagolzadeh-Haji, Hemat;Mohammadoo-Khorasani, Milad
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제47권1호
    • /
    • pp.54-60
    • /
    • 2020
  • Objective: Oxidative stress plays a key role in the pathogenesis of male infertility. But, the adverse effects of oxidative biomarkers on sperm quality remain unclear. This study aimed to investigate the levels of nitric oxide (NO), 8-hydroxydesoxyguanosine (8-OHdG), and total antioxidant capacity (TAC) oxidative biomarkers in seminal plasma and their relationship with sperm parameters. Methods: A total of 77 volunteers participated in the study, including fertile (n = 40) and infertile men (n = 37). NO, 8-OHdG, and TAC levels were measured using the ferric reducing ability of plasma, Griess reagent method and an enzyme-linked immunosorbent assay kit, respectively. Results: The mean values of sperm parameters in the infertile group were significantly lower than those in the fertile group (p< 0.001). The mean 8-OHdG in the seminal plasma of infertile men was significantly higher (p= 0.013) than those of controls, while the mean TAC was significantly lower (p= 0.046). There was no significant difference in NO level between the two groups. The elevated seminal 8-OHdG levels were negatively correlated with semen volume, total sperm counts and morphology (p< 0.001, p= 0.001 and p= 0.052, respectively). NO levels were negatively correlated with semen volume, total sperm counts and morphology (p= 0.014, p= 0.020 and p= 0.060, respectively). Positive correlations between TAC and both sperm count and morphology (p= 0.043 and p= 0.025, respectively) were also found. Conclusion: These results suggested that increased levels of NO and 8-OHdG in seminal plasma could have a negative effect on sperm function by inducing damage to the sperm DNA hence their fertility potentials. Therefore, these biomarkers can be useful in the diagnosis and treatment of male infertility.

A stress-function variational approach toward CFRP -concrete interfacial stresses in bonded joints

  • Samadvand, Hojjat;Dehestani, Mehdi
    • Advances in concrete construction
    • /
    • 제9권1호
    • /
    • pp.43-54
    • /
    • 2020
  • This paper presents an innovative stress-function variational approach in formulating the interfacial shear and normal stresses in an externally bonded concrete joint using carbon fiber-reinforced plastic (CFRP) plies. The joint is subjected to surface traction loadings applied at both ends of the concrete substrate layer. By introducing two interfacial shear and normal stress functions on the CFRP-concrete interface, based on Euler-Bernoulli beam idea and static stress equations of equilibrium, the entire stress fields of the joint were determined. The complementary strain energy was minimized in order to solve the governing equation of the joint. This yields an ordinary differential equation from which the interfacial normal and shear stresses were proposed explicitly, satisfying all the multiple traction boundary conditions. Lamination theory for composite materials was also employed to obtain the interfacial stresses. The proposed approach was validated by the analytic models in the literature as well as through a comprehensive computational code generated by the authors. Furthermore, a numerical verification was carried out via the finite element software ABAQUS. In the end, a scaling analysis was conducted to analyze the interfacial stress field dependence of the joint upon effective issues using the devised code.

Experimental study on axial compressive behavior of welded built-up CFT stub columns made by cold-formed sections with different welding lines

  • Naghipour, Morteza;Yousofizinsaz, Ghazaleh;Shariati, Mahdi
    • Steel and Composite Structures
    • /
    • 제34권3호
    • /
    • pp.347-359
    • /
    • 2020
  • The objective of this study is to experimentally scrutinize the axial performance of built-up concrete filled steel tube (CFT) columns composed of steel plates. In this case, the main parameters cross section types, compressive strength of filled concrete, and the effect of welding lines. Welded built-up steel box columns are fabricated by connecting two pieces of cold-formed U-shaped or four pieces of L-shaped thin steel plates with continuous penetration groove welding line located at mid-depth of stub column section. Furthermore, traditional square steel box sections with no welding lines are investigated for the comparison of axial behavior between the generic and build-up cross sections. Accordingly, 20 stub columns with thickness and height of 2 and 300 mm have been manufactured. As a result, welding lines in built-up specimens act as stiffeners because have higher strength and thickness in comparison to the plates. Subsequently, by increasing the welding lines, the load bearing capacity of stub columns has been increased in comparison to the traditional series. Furthermore, for specimens with the same confinement steel tubes and concrete core, increment of B/t ratio has reduced the ductility and axial strength.

Numerical modeling of semi-confined composite beams consisting of GFRP and concrete

  • Hassanzadeh, Amir Masoud;Dehestani, Mehdi
    • Structural Engineering and Mechanics
    • /
    • 제62권1호
    • /
    • pp.79-84
    • /
    • 2017
  • Utilizing composite members in structures has been considered by many researchers in the past few decades. Using FRP can be very effective owing to its excessively high-tensile strength, which compensate concrete weak performance in tension. In this research, the studied composite beam includes a GFRP semi-confined trapezoidal section covered by GFRP and concrete layers. To assess the bearing capacity, a finite-element model of a composite beam subjected to displacement control loading has been developed and the results were validated using experimental results found throughout the literature. Several parameters affecting the bending performance and behavior of the semi-confined beam have been investigated in this study. Some of these parameters included the thickness of GFRP trapezoidal section members, concrete layer thickness, GFRP layer thickness and the confinement degree of the beam. The results revealed that the beam confinement had the highest effect on the bearing capacity due to prevention of separation of concrete from GFRP which causes the failure of the beam. From the results obtained, an optimal model of primary beam section has been introduced, which provides a higher bearing capacity with the same volume of materials used in the original beam section.

Probabilistic evaluation of separation distance between two adjacent structures

  • Naeej, Mojtaba;Amiri, Javad Vaseghi;Jalali, Sayyed Ghasem
    • Structural Engineering and Mechanics
    • /
    • 제67권5호
    • /
    • pp.427-437
    • /
    • 2018
  • Structural pounding is commonly observed phenomenon during major ground motion, which can cause both structural and architectural damages. To reduce the amount of damage from pounding, the best and effective way is to increase the separation distance. Generally, existing design procedures for determining the separation distance between adjacent buildings subjected to structural pounding are based on approximations of the buildings' peak relative displacement. These procedures are based on unknown safety levels. The aim of this research is to estimate probabilistic separation distance between adjacent structures by considering the variability in the system and uncertainties in the earthquakes characteristics through comprehensive numerical simulations. A large number of models were generated using a robust Monte-Carlo simulation. In total, 6.54 million time-history analyses were performed over the adopted models using an ensemble of 25 ground motions as seismic input within OpenSees software. The results show that a gap size of 50%, 70% and 100% of the considered design code for the structural periods in the range of 0.1-0.5 s, leads to have the probability of pounding about 41.5%, 18% and 5.8%, respectively. Finally, based on the results, two equations are developed for probabilistic determination of needed structural separation distance.