DOI QR코드

DOI QR Code

Diagnostic performance of artificial intelligence using cone-beam computed tomography imaging of the oral and maxillofacial region: A scoping review and meta-analysis

  • Farida Abesi (Department of Oral and Maxillofacial Radiology, Dental Faculty, Babol University of Medical Sciences ) ;
  • Mahla Maleki (Student Research Committee, Babol University of Medical Sciences) ;
  • Mohammad Zamani (Student Research Committee, Babol University of Medical Sciences)
  • Received : 2022.12.27
  • Accepted : 2023.02.22
  • Published : 2023.06.30

Abstract

Purpose: The aim of this study was to conduct a scoping review and meta-analysis to provide overall estimates of the recall and precision of artificial intelligence for detection and segmentation using oral and maxillofacial cone-beam computed tomography (CBCT) scans. Materials and Methods: A literature search was done in Embase, PubMed, and Scopus through October 31, 2022 to identify studies that reported the recall and precision values of artificial intelligence systems using oral and maxillofacial CBCT images for the automatic detection or segmentation of anatomical landmarks or pathological lesions. Recall (sensitivity) indicates the percentage of certain structures that are correctly detected. Precision (positive predictive value) indicates the percentage of accurately identified structures out of all detected structures. The performance values were extracted and pooled, and the estimates were presented with 95% confidence intervals(CIs). Results: In total, 12 eligible studies were finally included. The overall pooled recall for artificial intelligence was 0.91 (95% CI: 0.87-0.94). In a subgroup analysis, the pooled recall was 0.88 (95% CI: 0.77-0.94) for detection and 0.92 (95% CI: 0.87-0.96) for segmentation. The overall pooled precision for artificial intelligence was 0.93 (95% CI: 0.88-0.95). A subgroup analysis showed that the pooled precision value was 0.90 (95% CI: 0.77-0.96) for detection and 0.94 (95% CI: 0.89-0.97) for segmentation. Conclusion: Excellent performance was found for artificial intelligence using oral and maxillofacial CBCT images.

Keywords

References

  1. Signorelli L, Patcas R, Peltomaki T, Schatzle M. Radiation dose of cone-beam computed tomography compared to conventional radiographs in orthodontics. J Orofac Orthop 2016; 77: 9-15.  https://doi.org/10.1007/s00056-015-0002-4
  2. Abesi F, Alimohamadi M. Cone beam computed tomography (CBCT) findings of fungal sinusitis in post COVID-19 patient: a case report. Caspian J Intern Med 2022; 13(Suppl 3): 307-10. 
  3. Barnett CW, Glickman GN, Umorin M, Jalali P. Interobserver and intraobserver reliability of cone-beam computed tomography in identification of apical periodontitis. J Endod 2018; 44: 938-40.  https://doi.org/10.1016/j.joen.2017.12.022
  4. Parker JM, Mol A, Rivera EM, Tawil PZ. Cone-beam computed tomography uses in clinical endodontics: observer variability in detecting periapical lesions. J Endod 2017; 43: 184-7.  https://doi.org/10.1016/j.joen.2016.10.007
  5. Fatima A, Shafi I, Afzal H, Diez IT, Lourdes DR, Brenosa J, et al. Advancements in dentistry with artificial intelligence: current clinical applications and future perspectives. Healthcare (Basel) 2022; 10: 2188. 
  6. Agrawal P, Nikhade P. Artificial intelligence in dentistry: past, present, and future. Cureus 2022; 14: e27405. 
  7. Hung K, Montalvao C, Tanaka R, Kawai T, Bornstein MM. The use and performance of artificial intelligence applications in dental and maxillofacial radiology: a systematic review. Dentomaxillofac Radiol 2020; 49: 20190107. 
  8. Khanagar SB, Al-Ehaideb A, Maganur PC, Vishwanathaiah S, Patil S, Baeshen HA, et al. Developments, application, and performance of artificial intelligence in dentistry - a systematic review. J Dent Sci 2021; 16: 508-22.  https://doi.org/10.1016/j.jds.2020.06.019
  9. Fontenele RC, Gerhardt MD, Pinto JC, Van Gerven A, Willems H, Jacobs R, et al. Influence of dental fillings and tooth type on the performance of a novel artificial intelligence-driven tool for automatic tooth segmentation on CBCT images - a validation study. J Dent 2022; 119: 104069. 
  10. Lee S, Woo S, Yu J, Seo J, Lee J, Lee C. Automated CNN-based tooth segmentation in cone-beam ct for dental implant planning. IEEE Access 2020; 8: 50507-18.  https://doi.org/10.1109/ACCESS.2020.2975826
  11. Orhan K, Bayrakdar IS, Ezhov M, Kravtsov A, Ozyurek T. Evaluation of artificial intelligence for detecting periapical pathosis on cone-beam computed tomography scans. Int Endod J 2020; 53: 680-9.  https://doi.org/10.1111/iej.13265
  12. Setzer FC, Shi KJ, Zhang Z, Yan H, Yoon H, Mupparapu M, et al. Artificial intelligence for the computer-aided detection of periapical lesions in cone-beam computed tomographic images. J Endod 2020; 46: 987-93.  https://doi.org/10.1016/j.joen.2020.03.025
  13. Lin X, Fu Y, Ren G, Yang X, Duan W, Chen Y, et al. Microcomputed tomography-guided artificial intelligence for pulp cavity and tooth segmentation on cone-beam computed tomography. J Endod 2021; 47: 1933-41.  https://doi.org/10.1016/j.joen.2021.09.001
  14. Badr FF, Jadu FM. Performance of artificial intelligence using oral and maxillofacial CBCT images: a systematic review and meta-analysis. Niger J Clin Pract 2022; 25: 1918-27.  https://doi.org/10.4103/njcp.njcp_394_22
  15. Muresanu S, Almasan O, Hedesiu M, Diosan L, Dinu C, Jacobs R. Artificial intelligence models for clinical usage in dentistry with a focus on dentomaxillofacial CBCT: a systematic review. Oral Radiol 2023; 39: 18-40.  https://doi.org/10.1007/s11282-022-00660-9
  16. Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 2009; 6: e1000097. 
  17. Moons KG, Wolff RF, Riley RD, Whiting PF, Westwood M, Collins GS, et al. PROBAST: a tool to assess risk of bias and applicability of prediction model studies: explanation and elaboration. Ann Intern Med 2019; 170: W1-33.  https://doi.org/10.7326/M18-1377
  18. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ 2003; 327: 557-60.  https://doi.org/10.1136/bmj.327.7414.557
  19. Lahoud P, Diels S, Niclaes L, Van Aelst S, Willems H, Van Gerven A, et al. Development and validation of a novel artificial intelligence driven tool for accurate mandibular canal segmentation on CBCT. J Dent 2022; 116: 103891. 
  20. Lee KS, Kwak HJ, Oh JM, Jha N, Kim YJ, Kim W, et al. Automated detection of TMJ osteoarthritis based on artificial intelligence. J Dent Res 2020; 99: 1363-7.  https://doi.org/10.1177/0022034520936950
  21. Li Q, Chen K, Han L, Zhuang Y, Li J, Lin J. Automatic tooth roots segmentation of cone beam computed tomography image sequences using U-net and RNN. J Xray Sci Technol 2020; 28: 905-22.  https://doi.org/10.3233/XST-200678
  22. Shaheen E, Leite A, Alqahtani KA, Smolders A, Van Gerven A, Willems H, et al. A novel deep learning system for multi-class tooth segmentation and classification on cone beam computed tomography. A validation study. J Dent 2021; 115: 103865. 
  23. Shujaat S, Jazil O, Willems H, Van Gerven A, Shaheen E, Politis C, et al. Automatic segmentation of the pharyngeal airway space with convolutional neural network. J Dent 2021; 111: 103705. 
  24. Zhang J, Liu M, Wang L, Chen S, Yuan P, Li J, et al. Context-guided fully convolutional networks for joint craniomaxillofacial bone segmentation and landmark digitization. Med Image Anal 2020; 60: 101621. 
  25. Zheng Z, Yan H, Setzer FC, Shi KJ, Mupparapu M, Li J. Anatomically constrained deep learning for automating dental CBCT segmentation and lesion detection. IEEE Trans Autom Sci Eng 2021; 18: 603-14.  https://doi.org/10.1109/TASE.2020.3025871
  26. Abesi F, Motaharinia S, Moudi E, Haghanifar S, Khafri S. Prevalence and anatomical variations of maxillary sinus septa: a cone-beam computed tomography analysis. J Clin Exp Dent 2022; 14: e689-93.  https://doi.org/10.4317/jced.59599
  27. Jaskari J, Sahlsten J, Jarnstedt J, Mehtonen H, Karhu K, Sundqvist O, et al. Deep learning method for mandibular canal segmentation in dental cone beam computed tomography volumes. Sci Rep 2020; 10: 5842. 
  28. Rasteau S, Ernenwein D, Savoldelli C, Bouletreau P. Artificial intelligence for oral and maxillo-facial surgery: a narrative review. J Stomatol Oral Maxillofac Surg 2022; 123: 276-82.  https://doi.org/10.1016/j.jormas.2022.01.010
  29. Sorkhabi MM, Khajeh MS. Classification of alveolar bone density using 3-D deep convolutional neural network in the cone-beam CT images: a 6-month clinical study. Measurement 2019; 148: 106945. 
  30. Liao WC, Chen CH, Pan YH, Chang MC, Jeng JH. Vertical root fracture in non-endodontically and endodontically treated teeth: current understanding and future challenge. J Pers Med 2021; 11: 1375. 
  31. Kurt Bayrakdar S, Orhan K, Bayrakdar IS, Bilgir E, Ezhov M, Gusarev M, et al. A deep learning approach for dental implant planning in cone-beam computed tomography images. BMC Med Imaging 2021; 21: 86. 
  32. Cha JY, Yoon HI, Yeo IS, Huh KH, Han JS. Peri-implant bone loss measurement using a region-based convolutional neural network on dental periapical radiographs. J Clin Med 2021; 10: 1009. 
  33. Park S, Kim H, Shim E, Hwang BY, Kim Y, Lee JW, et al. Deep learning-based automatic segmentation of mandible and maxilla in multi-center ct images. Appl Sci(Basel) 2022; 12: 1358. 
  34. Jha N, Lee KS, Kim YJ. Diagnosis of temporomandibular disorders using artificial intelligence technologies: a systematic review and meta-analysis. PLoS One 2022; 17: e0272715. 
  35. Codari M, Caffini M, Tartaglia GM, Sforza C, Baselli G. Computer-aided cephalometric landmark annotation for CBCT data. Int J Comput Assist Radiol Surg 2017; 12: 113-21.  https://doi.org/10.1007/s11548-016-1453-9
  36. Torosdagli N, Liberton DK, Verma P, Sincan M, Lee JS, Bagci U. Deep geodesic learning for segmentation and anatomical landmarking. IEEE Trans Med Imaging 2019; 38: 919-31.  https://doi.org/10.1109/TMI.2018.2875814
  37. Lahoud P, EzEldeen M, Beznik T, Willems H, Leite A, Van Gerven A, et al. Artificial intelligence for fast and accurate 3-dimensional tooth segmentation on cone-beam computed tomography. J Endod 2021; 47: 827-35.  https://doi.org/10.1016/j.joen.2020.12.020
  38. Kim YH, Jeon KJ, Lee C, Choi YJ, Jung HI, Han SS. Analysis of the mandibular canal course using unsupervised machine learning algorithm. PLoS One 2021; 16: e0260194. 
  39. Cui Z, Li C, Wang W. ToothNet: automatic tooth instance segmentation and identification from cone beam CT images. Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2019 Jun 15-20; Long Beach, USA: IEEE; 2019. p. 6361-70. 
  40. Cui Z, Fang Y, Mei L, Zhang B, Yu B, Liu J, et al. A fully automatic AI system for tooth and alveolar bone segmentation from cone-beam CT images. Nat Commun 2022; 13: 2096.