• Title/Summary/Keyword: BV2 microglial cells

Search Result 120, Processing Time 0.028 seconds

Hexane Fraction of Zingiberis Rhizoma Crudus Extract Inhibits the Production of Nitric Oxide and Pro-inflammatory Cytokines in LPS-stimulated BV2 Microglial Cells (뇌신경소교세포(腦神經小膠細胞)에서 생강 헥산 분획물의 염증매개물질 생성(生成) 억제효과(抑制效果))

  • Jung, Hwan-Yong;Joo, Ye-Jin;Jung, Hye-Mi;Shin, Woo-Jin;Seo, Un-Kyo
    • The Journal of Korean Medicine
    • /
    • v.30 no.2
    • /
    • pp.17-29
    • /
    • 2009
  • Objectives: The present study is focused on the inhibitory effect of the rhizome hexane fraction extract of Zingiberis Rhizoma Crudus (ginger hexan extract; GHE) on the production of inflammatory mediators such as NO, $PGE_2$, and proinflammatory cytokines in lipopolysaccharide (LPS)-stimulated BV2 cells, a mouse microglial cell line. Methods: We separated the hexane fraction from Zingiberis Rhizoma Crudus's methanol extract. The inhibitory and anti-inflammatory effect of GHE was examined on microglial activation. Results: GHE significantly inhibited the excessive production of NO, $PGE_2$, TNF-${\alpha}$, and IL-1${\beta}$ in LPS-stimulated BV2 cells. In addition, GHE attenuated the mRNA expressions and protein levels of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and proinflammatory cytokines. Conclusion: The anti-inflammatory properties of GHE may make it useful as a therapeutic candidate for the treatment of human neurodegenerative diseases.

  • PDF

Microarray analysis of gene expression profile by treatment of Nelumbinis Semen in LPS activated BV-2 microglial cells (LPS로 자극한 BV-2 microglial cell에서 Microarray를 통한 련자육(蓮子肉)의 유전자 발현 분석)

  • Kim, Soo-Oh;Lim, Byung-Mook;Bae, Hyun-Su
    • Korean Journal of Oriental Medicine
    • /
    • v.14 no.1
    • /
    • pp.145-160
    • /
    • 2008
  • Nelumbinis Semen(NS) has been used in traditional medicine to treat diseases such as depression and diarrhea. In inflammatory responses, microglia produces molecules which are known to play roles in the central nervous system. And we previously studied NS inhibited nitric oxide synthase and secretion of tumor necrosis factor alpha. To explore the global gene expression profiles in BV-2 microglial cell line treated with NS, microarray analysis was performed. The cells were treated with LPS or NS plus LPS for 30min, Ih, 3h, and 6h, respectively. Of 45,101 known genes, with cutoff value of 3-fold change in the expression, 340, 644, 280 and 219 genes were upregulated and 503, 570, 694 and 484 were downregulated in NS treated cells at each time point. The results of the present study shows that treatment of NS reversed the LPS-induced upregulation of such genes as Ecoxsackievirus and adenovirus receptor(CAR), pellino 1, and S100P binding protein. It is thought that microarrays will play an ever-growing role in the advance of our understanding of the pharmacologic actions NS.

  • PDF

Anti-inflammatory Effects of Metformin on Neuro-inflammation and NLRP3 Inflammasome Activation in BV-2 Microglial Cells

  • Ha, Ji-Sun;Yeom, Yun-Seon;Jang, Ju-Hun;Kim, Yong-Hee;Im, Ji In;Kim, In Sik;Yang, Seung-Ju
    • Biomedical Science Letters
    • /
    • v.25 no.1
    • /
    • pp.92-98
    • /
    • 2019
  • Metformin is a drug used for the treatment of diabetes and is associated with anti-inflammatory reaction, but the underlying mechanism is unclear. In this study, we investigated the effect of metformin on the inflammatory response in BV-2 microglial cells induced by lipopolysaccharide (LPS) and S100 calcium-binding protein A8 (S100A8). The results revealed that metformin significantly attenuated several inflammatory responses in BV-2 microglial cells, including the secretion of pro-inflammatory cytokines, such as tumor necrosis factor-${\alpha}$ and interleukin (IL)-6, involved in the activation of Beclin-1, a crucial regulator of autophagy. In addition, metformin inhibited the LPS-induced phosphorylation of ERK. Metformin also suppressed the activation of NOD-like receptor pyrin domain containing 3 inflammasomes composed of NLRP3, caspase-1, and apoptosis-associated speck like protein containing a caspase recruitment domain, which are involved in the innate immune response. Notably, metformin decreased the secretion of S100A8-induced IL-6 production. These findings suggest that metformin alleviates the neuroinflammatory response via autophagy activation.

The effect of scopoletin on Aβ-induced neuroinflammatory response in microglial BV-2 cells

  • Mun, Hui-Jin;Cho, Hyun-Jeong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.6
    • /
    • pp.165-170
    • /
    • 2020
  • In this paper, it was confirmed that scopoletin inhibits neuroinflammation induced by amyloid beta oligomer (Aβ1-42) in microglial BV-2. The mechanisms of inflammatory cytokines and inflammatory mediators by scopoletin were identified. Alzheimer's disease is the most common neurodegenerative disease, but it is a disease whose specific etiology is unknown, and many studies are trying to solve it. We first measured the cell viability with the CCK-8 assay method to confirm that scopoletin and Aβ1-42 are toxic to BV-2 cells. Expression levels of interleukin 1 beta (IL-1β), cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), and nuclear factor-κB (NF-κB) in inflammatory reactions induced by Aβ1-42 with western blot were analyzed. The ANOVA assay was used to compare protein expression differences between BV-2 cells treated with Aβ1-42 alone and BV-2 cells pretreated with Aβ1-42 and scopoletin. Therefore, this study suggested that scopoletin is worth developing as a neuroinflammatory protection agent for Alzheimer's disease in the future.

Inhibitory Effects of Forsythia velutina and its Chemical Constituents on LPS-induced Nitric Oxide Production in BV2 Microglial Cells

  • Kim, Na-Yeon;Ko, Min Sung;Lee, Chung Hyun;Lee, Taek Joo;Hwang, Kwang-Woo;Park, So-Young
    • Natural Product Sciences
    • /
    • v.28 no.3
    • /
    • pp.153-160
    • /
    • 2022
  • Neuroinflammation is known to be associated with brain injury in Alzheimer's disease (AD), and the inhibition of microglial activation, a key player in inflammatory response, is considerd as important target for AD. In this study, the ethanol extract of aerial parts of Forsythia velutina Nakai, a Korean native species, significantly inhibited nitric oxide (NO) production in LPS-stimulated BV2 microglial cells. Thus, the active principles in F. velutina aerial parts were isolated based on activity-guided isolation method. As a result, six compounds were isolated and their structures were elucidated based on NMR data and the comparison with the relevant references as arctigenin (1), matairesinol (2), rengyolone (3), ursolic acid (4), secoisolariciresinol (5), and arctiin (6). Among them, four compounds including arctigenin (1), matairesinol (2), secoisolariciresinol (5), and arctiin (6) significantly inhibited NO production in a dose-dependent manner. In particular, matairesinol (2) and secoisolariciresinol (5) reduced 60% of NO production compared to LPS-treated group. This inhibitory effects of matairesinol (2) and secoisolariciresinol (5) were accompanied with the reduced expression levels of iNOS and COX-2. These results suggest that the extract of F. velutina and its active compounds could be beneficial for neuroinflammatory diseases including AD.

ERK mediated suppressive effects of Sophora flavescens on Tnf alpha production in BV2 microglial cells (BV2 microglial cells에서 ERK를 통한 고삼의 Tnf alpha 생성 억제효과)

  • Kim, Soo-Cheol;Han, Mi-Young;Park, Hae-Jeong;Jung, Kyung-Hee
    • The Korea Journal of Herbology
    • /
    • v.22 no.2
    • /
    • pp.147-153
    • /
    • 2007
  • Objectives : Sophora flavescens (SF) is widely used in traditional herbal medicine in Korea and is well recognized for its anti-inflammatory effect. However, its effect on Tumornecrosis factor alpha (Tnf) production in BV2 microglial cell is not yet known. Methods : We investigated the effect of SF on the production and expression of Tnf, a well known inflammatory mediator, in lipopolysaccaride (LPS)-activated BV2 microglial cells. Results : The LPS-induced Tnf production was markedly reduced by treatment with SF (50 ${\mu}g/ml$). In reverse transcription polymerase chain reaction (RT-PCR) analysis, SF suppressed the LPS activated expression of Tnf mRNA. In addition, Western blot analysis confirmed that SF suppressed the expression of Tnf. Sophora flavescens also inhibited the LPS-induced phosphylation of extracellular signal-regulated kinases (ERK), which mediate the Tnfproduction signaling pathway whereas LPS-induced phosphylation of p38 mitogen activated protein kinase (p38 MAPK), and c-Jun NH2-terminal kinases (JNK) was not inhibited by SF, which implies that SF suppresses LPS-induced Tnf production via the ERK mediated pathway. Conclusion : Taken together, these findings indicated that SF inhibits LPS-induce Tnf production, and that this inhibitory effect is mediated via the ERK pathway.

  • PDF

Regulatory Effect of 25-hydroxyvitamin $D_3$ on Nitric Oxide Production in Activated Microglia

  • Hur, Jinyoung;Lee, Pyeongjae;Kim, Mi Jung;Cho, Young-Wuk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.5
    • /
    • pp.397-402
    • /
    • 2014
  • Microglia are activated by inflammatory and pathophysiological stimuli in neurodegenerative diseases, and activated microglia induce neuronal damage by releasing cytotoxic factors like nitric oxide (NO). Activated microglia synthesize a significant amount of vitamin $D_3$ in the rat brain, and vitamin $D_3$ has an inhibitory effect on activated microglia. To investigate the possible role of vitamin $D_3$ as a negative regulator of activated microglia, we examined the effect of 25-hydroxyvitamin $D_3$ on NO production of lipopolysaccharide (LPS)-stimulated microglia. Treatment with LPS increased the production of NO in primary cultured and BV2 microglial cells. Treatment with 25-hydroxyvitamin $D_3$ inhibited the generation of NO in LPS-activated primary microglia and BV2 cells. In addition to NO production, expression of 1-${\alpha}$-hydroxylase and the vitamin D receptor (VDR) was also upregulated in LPS-stimulated primary and BV2 microglia. When BV2 cells were transfected with 1-${\alpha}$-hydroxylase siRNA or VDR siRNA, the inhibitory effect of 25-hydroxyvitamin $D_3$ on activated BV2 cells was suppressed. 25-Hydroxyvitamin $D_3$ also inhibited the increased phosphorylation of p38 seen in LPS-activated BV2 cells, and this inhibition was blocked by VDR siRNA. The present study shows that 25-hydroxyvitamin $D_3$ inhibits NO production in LPS-activated microglia through the mediation of LPS-induced 1-${\alpha}$-hydroxylase. This study also shows that the inhibitory effect of 25-hydroxyvitamin $D_3$ on NO production might be exerted by inhibiting LPS-induced phosphorylation of p38 through the mediation of VDR signaling. These results suggest that vitamin $D_3$ might have an important role in the negative regulation of microglial activation.

Ipomoea aquatic Extracts (IAE) Attenuated Microglial Inflammation via Nrf2 Signaling (공심채 추출물(IAE)의 LPS로 유도된 미세아교세포에서의 Nrf2기전을 통한 항염증 효과)

  • Jiwon Choi;Sang Yoon Choi;Jinyoung Hur
    • Journal of the Korean Society of Food Culture
    • /
    • v.38 no.5
    • /
    • pp.365-372
    • /
    • 2023
  • Ipomoea aquatic is a leafy vegetable of the Convolvulaceae family, and is a tropical plant widely inhabiting southern China and Southeast Asia, and is widely known as Morning Glory in the West. In this study, the anti-inflammatory effects of ethyl acetate extract from Ipomoea aquatic extracts (IAE) were tested against lipopolysaccharide (LPS)-induced activation microglia BV2 cells. The production of nitric oxide (NO) and cell viability were measured using the Griess reagent and MTT assay, respectively. Inflammatory cytokine [interleukin (IL)-6, tumor necrosis factor (TNF)-α, and interleukin-1β (IL-1β)] were detected qPCR in LPS induced BV-2 cells. Subsequently, nuclear factor (NF)-κB, mitogen-activated protein kinases (MAPKs), and nuclear factor erythroid-2-related factor 2 (Nrf2) were analyzed through western blot analyses and immunofluorescence. Ipomoea aquatic down-regulated of inflammatory markers and up-regulated anti-inflammatory and anti-oxidants in BV2 cells.

Bee Venom Suppresses Lipopolysaccharide-stimulated Expression of Cyclooxygenase-2 and Inducible Nitric Oxide Synthase in Mouse BV2 Microglial Cells (봉독약침액이 BV2 세포에서 LPS로 유발된 염증반응에 미치는 영향)

  • Jang, Mi-Hyeon;Lee, Myoung-Hwa;Kim, Chang-Ju;Shin, Hye-Sook;Park, Se-Keun;Kim, Jeong-Seon;Kim, Ee-Hwa
    • Korean Journal of Acupuncture
    • /
    • v.22 no.1
    • /
    • pp.85-93
    • /
    • 2005
  • 목적 : 본 연구는 봉독 약침액이 BV2 microglial cell에서 LPS로 유발된 염증반응에 대한 억제효과를 관찰하고자 하였다. 방법 : 봉독 약침액의 항염증작용을 관찰하기 위하여 BV2 microglial cell에 봉독약침액을 1시간전에 농도별$(0.1,\;1,\;100\;{\mu}g/ml)$로 전처치한 후 LPS $(5\;{\mu}g/ml)$로 24시간 동안 처리하여 RT-PCR, western blot, $PGE_2$, assay, NO synthesis assay등의 방법으로 관찰하였다. 결과 : LPS 염증유발에 의해서 BV2 microglial cell에서 COX-2 및 NOS 발현이 증가하였고, 이 러한 증가는 prostaglandin E2 및 NO 합성을 증가시켰다. 이에 반하여 봉독약침액으로 전처치한 군에서는 COX-2 및 NOS 발현을 억제시켜 결과적으로 prostaglandin 합성 및 NO 합성을 억제시킴을 확인할 수 있었다. 또한 LPS 염증유발에 의해서 활성화된 NF-kB의 발현을 억제 시켰다. 결론 : 봉독약침 액은 LPS 염증유발에 의해서 증가된 prostaglandin E2 및 NO 합성을 억제시킴으로써 여러 가지 염종질환의 치료에 유효한 효과가 있을 것으로 사려 된다.

  • PDF

Microarray analysis of hypoxia-induced changes in gene expression in BV-2 microglial cells (BV-2 microglia 세포주에서 저산소증의 유전자 발현에 대한 마이크로어레이 분석)

  • Kim, Bum-Shik;Seo, Jung-chul
    • Journal of Acupuncture Research
    • /
    • v.20 no.4
    • /
    • pp.85-92
    • /
    • 2003
  • 목적 : 허혈시 발생되는 저산소중 상태에서는 세포독성을 유발한다고 알려져 있으나 정확한 기전은 아직 규명되지 않았다. 본 연구에서는 뇌허혈로 인한 세포독성의 기전을 유전자 발현을 통하여 살펴보고자 하였다. 방법 : 본 실험에서는 BV-2 microglia 세포주에 12시간 동안의 저산소 상태에서의 유전자 발현을 분석하기 위하여 마이크로에레이를 시행하였다. 결과 : 저산소 상태에서는 정상에 비하여 cathepsin F, growth factor independent 1, calcitonin/calcitonin-related poly, leucine-rich repeat LGI family membrane, dublecortin, cyclohydrolase 1, Ia-associated invariant chain, carbohydrate kinase-like과 erythrocyte protein band 4.1-like 3 등의 유전자 발현이 3배 이상 증가하였다. 한편 neuronal guanine nucleotide exchange factor, Bcl-2-related ovarian killer protein, chemokine (C-X-C motif) ligand 5, RNA binding motif protein 3, interleukin 2 receptor, alpha chain, crystallin zeta, cytochrome P450 subfamily IV B, asparagine synthetase과 moesin 등의 유전자 발현은 0.2배 이하로 감소하였다. 결론 : 이상의 결과는 저산소중에 관여하는 유전자 및 저산소중과 관련된 뇌경색 등의 질환의 기전을 밝히는데 기초적 자료로 이용될 수 있을 것이다.

  • PDF