• Title/Summary/Keyword: BV2 microglia

Search Result 136, Processing Time 0.025 seconds

Regulatory Effect of 25-hydroxyvitamin $D_3$ on Nitric Oxide Production in Activated Microglia

  • Hur, Jinyoung;Lee, Pyeongjae;Kim, Mi Jung;Cho, Young-Wuk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.5
    • /
    • pp.397-402
    • /
    • 2014
  • Microglia are activated by inflammatory and pathophysiological stimuli in neurodegenerative diseases, and activated microglia induce neuronal damage by releasing cytotoxic factors like nitric oxide (NO). Activated microglia synthesize a significant amount of vitamin $D_3$ in the rat brain, and vitamin $D_3$ has an inhibitory effect on activated microglia. To investigate the possible role of vitamin $D_3$ as a negative regulator of activated microglia, we examined the effect of 25-hydroxyvitamin $D_3$ on NO production of lipopolysaccharide (LPS)-stimulated microglia. Treatment with LPS increased the production of NO in primary cultured and BV2 microglial cells. Treatment with 25-hydroxyvitamin $D_3$ inhibited the generation of NO in LPS-activated primary microglia and BV2 cells. In addition to NO production, expression of 1-${\alpha}$-hydroxylase and the vitamin D receptor (VDR) was also upregulated in LPS-stimulated primary and BV2 microglia. When BV2 cells were transfected with 1-${\alpha}$-hydroxylase siRNA or VDR siRNA, the inhibitory effect of 25-hydroxyvitamin $D_3$ on activated BV2 cells was suppressed. 25-Hydroxyvitamin $D_3$ also inhibited the increased phosphorylation of p38 seen in LPS-activated BV2 cells, and this inhibition was blocked by VDR siRNA. The present study shows that 25-hydroxyvitamin $D_3$ inhibits NO production in LPS-activated microglia through the mediation of LPS-induced 1-${\alpha}$-hydroxylase. This study also shows that the inhibitory effect of 25-hydroxyvitamin $D_3$ on NO production might be exerted by inhibiting LPS-induced phosphorylation of p38 through the mediation of VDR signaling. These results suggest that vitamin $D_3$ might have an important role in the negative regulation of microglial activation.

Anti-inflammatory effect of various solvent extract from Atractylodes japonica on Lipopolysaccharide-induced Inflammation in BV2 cells. (창출 추출물의 BV2 cell 소염작용에 관한 실험적 연구)

  • Hur, Inn-Hee;Sim, Sung-Yong;Kim, Kyung-Jun
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.20 no.2 s.33
    • /
    • pp.36-46
    • /
    • 2007
  • Objective : In this study, the effect of Atractylodes japonica against LPS induced inflammation in mouse microglia BV2 cells was investigated. Method : Microglia BV2 Cells viability was determined using the MTT assay. We used water, ethanol extract from Atractylodes japonica and studied on the anti-inflammatory effect of lipopolysaccharide-induced inflammation using reverse transcription polymerase chain reaction (RT-PCR), western blot, and nitric oxide detection on mouse microglia BV2 cells. Result : The MTT assay revealed that it's extract has no significant cytotoxicity in the microglia BV2 cell. Various solvent extract from Atractylodes japonica inhibited nitrite production, iNOS protein and mRNA expression levels. And also it's extracts significantly reduced lipopolysaccharide-induced COX-2 activation in RT-PCR and western blot in lipopolysaccharide-induced microglia BV2 cells Conclusion : In this study, it's extracts was shown to suppress NO production by inhibiting iNOS expression and COX-2 activity. With this effects of anti-inflammation, we suggests that, it's extracts may be a useful candidate for the development of a drug on the related inflammatory diseases in brain.

  • PDF

Anti-inflammatory Effect of an Ethanolic Extract of Myagropsis yendoi in Lipopolysaccharide-Stimulated BV-2 Microglia Cells

  • Salih, Sarmad Ali;Kim, Hyeung-Rak
    • Fisheries and Aquatic Sciences
    • /
    • v.17 no.1
    • /
    • pp.27-35
    • /
    • 2014
  • Marine brown algae have been identified as a rich source of structurally diverse bioactive compounds. Whether Myagropsis yendoi ethanolic extracts (MYE) inhibit inflammatory responses was investigated using lipopolysaccharide (LPS)-stimulated microglia BV-2 cells. MYE inhibited LPS-induced nitric oxide (NO) production in a dose-dependent manner and suppressed the expression of inducible nitric oxide synthase in BV-2 cells. MYE also reduced the production of pro-inflammatory cytokines in LPS-stimulated BV-2 cells. LPS-induced nuclear factor-${\kappa}B$ (NF-${\kappa}B$) transcriptional activity and NF-${\kappa}B$ translocation into the nucleus were significantly inhibited by MYE treatment through preventing degradation of the inhibitor ${\kappa}B-{\alpha}$. Moreover, MYE inhibited the phosphorylation of AKT, ERK, JNK, and p38 mitogen-activated protein kinase in LPS-stimulated BV-2 cells. These results indicate that MYE is a potential source of therapeutic or functional agents for neuroinflammatory diseases.

Chemical Constituents from the Aerial Parts of Artemisia absinthium and Its Inhibitory Effects of Nitric Oxide Production in RAW264.7 and BV2 Microglia (쓴쑥 지상부의 화학성분과 RAW264.7 및 BV2 미세아교세포에서 Nitric Oxide 생성 억제효과)

  • Ko, Hae Ju;Lee, Hwan;Lee, Dong-Sung;Woo, Eun-Rhan
    • Korean Journal of Pharmacognosy
    • /
    • v.49 no.1
    • /
    • pp.1-6
    • /
    • 2018
  • Six compounds, eupatilin (1), dammaradienyl acetate (2), glutinol acetate (3), $3{\beta}-acetoxyoleanan-12-one$ (4), taraxasterol (5) and quercetin-3,4'-dimethyl ether (6) were isolated from the aerial parts of Artemisia absinthium. The chemical structures of compounds 1-6 were determined by the basis of physico-chemical properties and spectroscopic methods such as 1D and 2D NMR. Among them, compounds 2-5 were isolated from this plant for the first time. The inhibitory effects of these isolated compounds against nitric oxide (NO) production in LPS-induced RAW264.7 cells or BV2 microglia were also examined. Among the tested compounds, compound 1, eupatilin, inhibited the production of NO in LPS-induced RAW264.7 cells and BV2 microglia, respectively.

Apoptosis Induction Effect of Zingiberis Rhizoma Extract in Microglia BV-2 Cells

  • Seo, Jeongbin;Oh, Myung Sook;Jang, Young Pyo;Kim, Jeong Hee
    • International Journal of Oral Biology
    • /
    • v.42 no.1
    • /
    • pp.9-15
    • /
    • 2017
  • Microglia have multiple functions in regulating homeostasis of the central nervous system. Microglia cells have been implicated as active contributors to neuron damage in neurodegenerative disorders. In this study, medicinal plant extracts (MPEs) were used to evaluate the cell-death induction effect in microglia BV-2 cells. Among 35 MPEs tested in this study, 4 MPEs showed less than a 30% cell survival after 24 hours of incubation. These were Foeniculi Fructus, Forsythiae Fructus, Zingiberis Rhizoma and Hedera Rhombea. The concentration showed that 50% cell death ($IC_{50}$) occurred with 33, 83, 67 Ed highlight: Please confirm wording, and $81{\mu}/ml$, respectively. For further study, we chose Zingiberis Rhizoma (ZR) which showed a reasonably low $IC_{50}$ value and an induction of cell death in a relatively narrow range. Western blot analysis showed that ZR-treated cells showed activation of caspase-3 and cleavage of PARP Ed highlight: When an acronym is first presented it needs to be spelled out in both dose- and time-dependent manners. However, the level of Bcl-2 and Bax were not changed by ZR-treatment in BV-2 cells. These results suggest that ZR-induced apoptosis in BV-2 cells occured through caspase-3 activation. The results also suggested that ZR may be useful in developing treatments for neurodegenerative diseases.

Activation of Autophagy Pathway Suppresses the Expression of iNOS, IL6 and Cell Death of LPS-Stimulated Microglia Cells

  • Han, Hye-Eun;Kim, Tae-Kyung;Son, Hyung-Jin;Park, Woo Jin;Han, Pyung-Lim
    • Biomolecules & Therapeutics
    • /
    • v.21 no.1
    • /
    • pp.21-28
    • /
    • 2013
  • Microglia play a role in maintaining and resolving brain tissue homeostasis. In pathological conditions, microglia release pro-inflammatory cytokines and cytotoxic factors, which aggravate the progression of neurodegenerative diseases. Autophagy pathway might be involved in the production of pro-inflammatory cytokines and cytotoxic factors in microglia, though details of the mechanism remain largely unknown. In the present study, we examined the role of the autophagy pathway in activated BV2 microglia cells. In BV2 cells, rapamycin treatment activated the formation of anti-LC3-labeled autophagosomes, whereas the ATG5 depletion using siRNA-ATG5 prevented the formation of LC3-labeled autophagosomes, indicating that BV2 cells exhibit an active classical autophagy system. When treated with LPS, BV2 cells expressed an increase of anti-LC3-labeled dots. The levels of LC3-labeled dots were not suppressed, instead tended to be enhanced, by the inhibition of the autophagy pathway with siRNA-ATG5 or wortmannin, suggesting that LPS-induced LC3-labeled dots in nature were distinct from the typical autophagosomes. The levels of LPS-induced expression of iNOS and IL6 were suppressed by treatment with rapamycin, and conversely, their expressions were enhanced by siRNA-ATG5 treatment. Moreover, the activation of the autophagy pathway using rapamycin inhibited cell death of LPS-stimulated microglia. These results suggest that although microglia possess a typical autophagy pathway, the glial cells express a non-typical autophagy pathway in response to LPS, and the activation of the autophagy pathway suppresses the expression of iNOS and IL6, and the cell death of LPS-stimulated microglia.

Anti-neuroinflammatory Effect of Plantago Major var. Japonica in BV-2 Microglial Cells

  • Kang, Hyun
    • Biomedical Science Letters
    • /
    • v.23 no.4
    • /
    • pp.411-415
    • /
    • 2017
  • To evaluate the protective effects of Plantago Major extract (PME) in stimulated BV-2 microglial cells and its anti-oxidant properties, cell viability assessment was performed by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. Lipopolysaccharide (LPS) was used to activate BV-2 microglia. Nitric oxide (NO) levels were measured using Griess assay. Tumor necrosis factor-alpha (TNF-${\alpha}$) production was evaluated by enzyme-linked immunosorbent assay (ELISA). Antioxidant properties were evaluated by 1, 1-diphenyl-2-picryl-hydrazyl (DPPH) radical scavenging assay. LPS-activated excessive release of NO in BV-2 cells was significantly inhibited by PME (P < 0.001 at $100{\mu}g/mL$). PME also scavenged DPPH radicals in a dose-dependent manner (P < 0.05 at $10{\mu}g/mL$ and P < 0.001 at $20{\sim}200{\mu}g/mL$). These results indicate that PME attenuated neuroinflammatory responses in LPS-activated BV-2 microglia by inhibiting excessive production of pro-inflammatory mediators such as NO and TNF-${\alpha}$. The anti-neuroinflammatory potential of PME may be related to its strong antioxidant properties.

Induction of Cell Death by Betulinic Acid through Induction of Apoptosis and Inhibition of Autophagic Flux in Microglia BV-2 Cells

  • Seo, Jeongbin;Jung, Juneyoung;Jang, Dae Sik;Kim, Joungmok;Kim, Jeong Hee
    • Biomolecules & Therapeutics
    • /
    • v.25 no.6
    • /
    • pp.618-624
    • /
    • 2017
  • Betulinic acid (BA), a natural pentacyclic triterpene found in many medicinal plants is known to have various biological activity including tumor suppression and anti-inflammatory effects. In this study, the cell-death induction effect of BA was investigated in BV-2 microglia cells. BA was cytotoxic to BV-2 cells with $IC_{50}$ of approximately $2.0{\mu}M$. Treatment of BA resulted in a dose-dependent chromosomal DNA degradation, suggesting that these cells underwent apoptosis. Flow cytometric analysis further confirmed that BA-treated BV-2 cells showed hypodiploid DNA content. BA treatment triggered apoptosis by decreasing Bcl-2 levels, activation of capase-3 protease and cleavage of PARP. In addition, BA treatment induced the accumulation of p62 and the increase in conversion of LC3-I to LC3-II, which are important autophagic flux monitoring markers. The increase in LC3-II indicates that BA treatment induced autophagosome formation, however, accumulation of p62 represents that the downstream autophagy pathway is blocked. It is demonstrated that BA induced cell death of BV-2 cells by inducing apoptosis and inhibiting autophagic flux. These data may provide important new information towards understanding the mechanisms by which BA induce cell death in microglia BV-2 cells.

Effects and molecular mechanisms of Noemyeong-san, a novel herbal prescription for treating Alzheimer's disease on microglia (미세아교세포에서 알츠하이머형 치매 치료 처방인 뇌명산(腦明散)의 효능 및 기전연구)

  • Han, Sangtae;Jeong, Ji-Cheon
    • Herbal Formula Science
    • /
    • v.25 no.4
    • /
    • pp.471-481
    • /
    • 2017
  • Objectives : Noemyeong-san (NMS) is a novel herbal prescription composed of five oriental medicinal herbs including Prunellae Spica, Betulae Cortex, Foeniculi Fructus, Asiasari Radix, and Clematidis Radix for treating Alzheimer's disease. In the present study, we investigated the effects and molecular mechanisms of NMS on BV2 microglia to evaluate the potential action of this formula for preventing or treating neurodegenerative disease such as Alzheimer's disease. Methods : To determine the cytotoxicity of NMS on BV2 microglia, the MTT assay was performed. The effects of NMS on lipopolysaccharide (LPS)-stimulated BV2 microglia were determined with a nitric oxide (NO) assay and western blots for inflammatory mediator-related proteins, mitogen activated protein kinases (MAPKs), nuclear factor kappa B (NF-${\kappa}B$) pathway-related proteins, and heme oxygenase-1 (HO-1). Result : NMS inhibited induction of iNOS and COX-2 as well as NO production without affecting the cell viability in LPS-stimulated BV2 microglia. NMS also suppressed activation of ERK and p38 MAPK among main kinases of MAPKs as well as NF-${\kappa}B$ by LPS stimulation. Furthermore, NMS dose-dependently induced the expression of HO-1 and the inhibitory effect of NMS on the production of NO were blocked by pretreatment with an HO-1 inhibitor, Snpp. Conclusions : These results demonstrate that NMS has potent anti-neuroinflammatory effect on the LPS-stimulated microglia. These findings provide evidences for NMS to be considered as a new prescription for preventing or treating neurodegenerative disease such as Alzheimer's disease.

Noni Inhibits Neuronal Damage Caused by the Immune Reaction of Microglial Cells Activated by Doxorubicin (Doxorubicin에 의해 활성화된 미세 아교세포의 면역반응으로 인한 신경손상에 Noni가 미치는 영향)

  • Jung, Se-Hwa;Lee, Seong-Min;Ha, Ji-Sun;Yang, Seung-Ju;Kim, Pyung-Hwan
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.52 no.4
    • /
    • pp.389-397
    • /
    • 2020
  • Microglial cells function as major immune cells in the brain, playing an important role in the protection and damage of neurons. BV2 microglia, activated by drug stimulation, secrete inflammatory cytokines by activating the nuclear factor kappa-light-chain-enhancer of the activated B cells pathway and are involved in neuroinflammatory and immune responses. The overactivation of microglia by stimuli can cause neuronal damage, leading to brain disease. Noni, a natural product, reduces the activity of microglia to prevent neuronal damage and is a potential natural medicine because it exerts excellent regeneration and anti-inflammatory effects on damaged cells. In this study, when noni was used to treat BV2 cells stimulated by the anti-cancer drug doxorubicin, it reduced the release of pro-inflammatory cytokines from BV2. On the other hand, neuronal damage is a side effect of doxorubicin. Therefore, the cytokines released from doxorubicin-stimulated BV2 cells treated with noni had a positive effect on the neuronal viability compared to those released from doxorubicin-stimulated BV2 cells not treated with Noni. Thus, Noni increases neuronal viability. These results suggest that noni inhibits the release of cytokines by regulating the nuclear factor kappa-light-chain-enhancer of the activated B cells pathway of BV2, thereby inhibiting neuronal damage.