Chemical Constituents from the Aerial Parts of Artemisia absinthium and Its Inhibitory Effects of Nitric Oxide Production in RAW264.7 and BV2 Microglia

쓴쑥 지상부의 화학성분과 RAW264.7 및 BV2 미세아교세포에서 Nitric Oxide 생성 억제효과

  • Received : 2017.11.24
  • Accepted : 2018.01.18
  • Published : 2018.03.31

Abstract

Six compounds, eupatilin (1), dammaradienyl acetate (2), glutinol acetate (3), $3{\beta}-acetoxyoleanan-12-one$ (4), taraxasterol (5) and quercetin-3,4'-dimethyl ether (6) were isolated from the aerial parts of Artemisia absinthium. The chemical structures of compounds 1-6 were determined by the basis of physico-chemical properties and spectroscopic methods such as 1D and 2D NMR. Among them, compounds 2-5 were isolated from this plant for the first time. The inhibitory effects of these isolated compounds against nitric oxide (NO) production in LPS-induced RAW264.7 cells or BV2 microglia were also examined. Among the tested compounds, compound 1, eupatilin, inhibited the production of NO in LPS-induced RAW264.7 cells and BV2 microglia, respectively.

Keywords

References

  1. Colin, W. (2002) Artemisia, Artemisia Medicinal and Aromatic Plants, p. 344. Industrial Profiles and Chemical Rubber Company (CRC), London & New York.
  2. Aberham, A., Cicek, S. S., Schneider, P. and Stuppner, H. (2010) Analysis of sesquiterpene lactones, lignans, and flavonoids in wormwood (Artemisia absinthium L.) using highperformance liquid chromatography (HPLC)-mass spectrometry, reversed phase HPLC, and HPLC-solid phase extraction-nuclear magnetic resonance. J. Agric. Food Chem. 58: 10817-10823. https://doi.org/10.1021/jf1022059
  3. Ahamad, J., Naquvi, K. J., Ali, M. and Mir, S. R. (2014) Isoflavone glycosides from aerial parts of Artemisia absinthium. Chem. Nat. Compd., 49: 996-1000.
  4. Tulake, A., Jiang, Y. and Tu, P. F. (2012) Nine lignans from Artemisia absinthium L. J. Chin. Pharm. Sci. 21: 360-364.
  5. Ahamad, J., Naquvi, K. J., Ali, M. and Mir, S. R. (2013) New glycoside esters from the aerial parts of Artemisia absintium Linn. Nat. Prod. J. 3: 260-267.
  6. Berlet, B. S. and Stadtman, E. R. (1997) Protein oxidation in aging, disease, and oxidative stress. J. Biol. Chem. 272: 20313-20316.
  7. Remick, D. G., Strieter, R. M., Eskandari, M. K., Nguyen, D. T., Genord, M. A., Raiford, C. L. and Kunkel, S. L. (1990) Role of tumor necrosis factor-alpha in lipopolysaccharideinduced pathologic alterations. Am. J. Pathol. 136: 49-60.
  8. Gonzalelz-Scarano, F. and Baltuch, G. (1999) Microglia as mediators in inflammatory and degenerative disease. Annu. Rev. Neurosci. 22: 219-240. https://doi.org/10.1146/annurev.neuro.22.1.219
  9. Kim, A. R., Ko, H. J., Chowdhury, M. A., Chang, Y. S. and Woo, E.-R. (2015) Chemical constituents on the aerial parts of Artemisia selengensis and their IL-6 inhibitory activity. Arch. Pharm. Res. 38: 1059-1065. https://doi.org/10.1007/s12272-014-0543-x
  10. Liu, R., Wang, X.-B. and Kong, L.-Y. (2006) Dammaradienyl acetate. Acta Cryst. E62: o3544-o3546.
  11. Seedi, E. and Hesham, R. (2005) Antimicrobial triterpenes from Poulsenia armata Miq. Standl. Nat. Prod. Res. 19: 197-202. https://doi.org/10.1080/14786410410001730724
  12. Fingolo, C. E., Santos, T. de S., Vianna, F. M. D. M. and Kaplan, M. A. C. (2013) Triterpene esters: natural products from Dorstenia arifolia. Molecules 18: 4247-4256. https://doi.org/10.3390/molecules18044247
  13. Gaydou, E. M., Faure, R. and Wollenweber, E. (1996) ${\beta}$-amyrin acetate epoxide from Canarina canariensis. Phytochemistry 42: 1115-1118. https://doi.org/10.1016/0031-9422(96)00118-5
  14. Yekta, M. M. and Alavi, S. H. R. (2008) New triterpenoids from Peucedanum ruthemicum. Iran J Pharm. Sci. 4: 289-294.
  15. Carvalho, M. G., Velandia, J. R. and Beserra, L. O. F. B. (1998) Triterpenoid isolated from Eschweilera longipes Miers (Lecythidaceae). Quim. Nova. 21: 740-743. https://doi.org/10.1590/S0100-40421998000600014
  16. Kwon, Y. S. and Kim, C. M. (2003) Antioxidant constituents from the stem of Sorghum bicolor. Arch. Pharm. Res. 26: 535-539. https://doi.org/10.1007/BF02976877
  17. Knowles, R. G. and Moncada, S. (1994) Nitric oxide synthases in mammals. Biochem. J. 298: 249-258. https://doi.org/10.1042/bj2980249
  18. Choi, E. J., Lee, S., Chae, J. R., Lee, H. S., Jun, C. D. and Kim, S. H. (2011) Eupatilin inhibits lipopolysaccharideinduced expression of inflammatory mediators in macrophages. Life Sci. 88: 1121-1126. https://doi.org/10.1016/j.lfs.2011.04.011
  19. Sapkota, A., Gaire, B. P., Cho, K. S., Jeon, S. J., Kwon, O. W., Jang, D. S., Kim, S. Y., Ryu, J. H. and Choi, J. W. (2017) Eupatilin exerts neuroprotective effects in mice with transient focal cerebral ischemia by reducing microglial activation. PLoS One. 12: e0171479.