• Title/Summary/Keyword: BTT Missile

Search Result 11, Processing Time 0.03 seconds

Design of robust controller for the longitudinal autopilot system of BTT missile using QFT (QFT를 이용한 BTT 미사일 종방향 오토파일럿 시스템의 강인제어기 설계)

  • 김석우;윤경한;김영철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.418-421
    • /
    • 1997
  • A design method of robust controller for the longitudinal autopilot of BTT missile is considered. The difficulties are a set of linearized dynamic models which corresponds to different operating points has a wide range of parameters and it has even Non-Minimum Phase(NMP) zeros. In this paper, such a family of models is expressed by an interval plant. Then a robust control design method using QFT is represented. A simulation result shows that the proposed controller satisfies the given specification well.

  • PDF

Design of an Autopilot for the BTT Missile using 2DOF Wiener-Hopf Methods (2자유도 위너-호프 제어기법을 이용한 BTT 유도탄의 자동조종장치 설계)

  • Min, Deuk-Gi;Lee, Jong-Sung;Park, Ki-Heon
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.569-572
    • /
    • 1999
  • This paper presents a method for designing an autopilot of the BTT missile using 2DOF Wiener-Hopf control technique to improve tracking performance. Linear controllers are designed based on the linearized models which are obtained from the nonlinear missile dynamic equations at various operating points. The gain scheduling technique is used to implement the final autopilot. A simulation on the flight of missiles is carried out through the use of 6DOF equation program including exact nonlinear equations of the missile and the variations of aerodynamic variables in order to check applicability of the suggested method in real situation.

  • PDF

The Body-Coupling Compensation in the 2-Gimbaled Seeker for the Homing Guidance of Bank-to-Turn Missile (Bank-to-Turn 유도탄의 호밍유도를 위한 2축 김발형 탐색기 동체운동 상관 보상)

  • Jeong, Sang-Keun;Kim, Eul-Gon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.6
    • /
    • pp.101-106
    • /
    • 2002
  • In a bank-to-turn(BTT) missile, if a 2-gimbaled seeker was stabilized using a 2-axis rate gyro mounted along its primary axis, the change of line of sight(LOS) measured by the seeker would be induced by rolling effects due to bank-to-turn(BTT) steering as well as an actual change. It is observed that the body-coupled effects in a homing loop of BTT missile are mainly concerned with the spurious target maneuver and the coupling due to the rate gyro misalignments. In this paper, we formulate a simple linear BTT homing loop model with seeker model including each body-coupling. With the model, we analyze the effects of the couplings on the homing loop stability, and propose a direct linear compensator for the coupling to recover the stability.

Design of an Autopilot for the Bank-to-Turn Missile using Wiener-Hopf Methods (위너-호프 제어기법을 이용한 BTT 유도탄의 자동조종장치 설계)

  • Min, Deuk-Gi;Park, Ki-Heon
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.6
    • /
    • pp.45-56
    • /
    • 1999
  • This paper presents a method for designing an autopilot of the BTT missile using 2DOF Wiener-Hopf control technique to improve tracking performance. Linear controllers are designed based on the linearized models which are obtained from the nonlinear missile dynamic equations at various operating points. The gain scheduling technique is used to implement the final autopilot. A simulation on the flight of missiles is carried out through the use of 6DOF equation program including exact nonlinear equations of the missile and the variations of aerodynamic variables in order to check applicability of the suggested method in real situation.

  • PDF

Design of autopilot for a guided missile using model reference adaptive control (기준모델 적응제어에 의한 유도 비행체의 자동조종장치 설계에 관한 연구)

  • Lim, Ho;Park, Jeong-Il;Kim, Won-kyu;Park, Chong-Kug
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.499-502
    • /
    • 1989
  • This paper is concerned with the stability analysis and the design of an auto pilot using direct model reference adaptive control for BTT missile with unknown dynamics when subjected to the longitudinal and lateral gusts. A motion of BTT missile can be separated into the longtudinal and lateral motione. The proposed algorithm is introduced different leakage terms about each motion into adaptation so as to prevent drift of the adaptive gain and alleviate gust effects and cross-coupling. The algorithm is applied to the 6DOF motion of an EMRAAT missile.

  • PDF

Design of 3D GUI Simulator for Integrated BTT Missile System (고기동 BTT 미사일 시스템의 통합 시뮬레이션을 위한 GUI 구현)

  • Park, Se-Beom;Yeom, Joon-Hyung;Ha, In-Joong
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1790_1791
    • /
    • 2009
  • OpenCV을 사용하여 MFC/OpenGL 환경의 BTT 미사일을 설계하였다. 시뮬레이션을 수행 하는 동안의 이미지에서 표적의 특징점(Feature point)를 추출해 호모그래피 행렬(Homography Matrix)을 계산하여 이로부터 표적의 위치, 속도, 자세 정보등을 추정하도록 하였다. 그리고 미사일 동역학, 자동 조종 장치 역시 C로 구현하여 통합 시뮬레이션 환경을 구축하였다.

  • PDF

Compensation for the Body-Coupling in the 2-Gimballed Seeker Homing Loop on BTT Missile

  • Sangkeun Jeong;Kim, Eulgon;Chanho Song;Hangju Cho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.156.1-156
    • /
    • 2001
  • It is observed that if the 2-gimballed seeker is stabilized using rate gyros mounted along its primary axis, line of sight change measured in the seeker is induced by the rolling due to the bank-to-turn(BTT) steering as well as the actual change. This body-coupling within BTT homing includes the spurious target maneuver effect and the coupling loop due to the rate gyro misalignment. In this paper we formulates the linear BTT homing loop model with a 2-gimballed seeker including those body-coupling effects. With the model, we analyze the effects of the couplings, and show that the roll rate coupling to the rate gyro for the stabilztion of gimbal could seriously deteriorate the homing loop stability. And we propose a direct linear compensator for the coupling to recover the stability.

  • PDF

A Feedback-Form of Terminal-Phase Optimal Guidance Law for BTT Missiles Considering Autopilot Dynamics (자동조종장치 동역학을 고려한 궤환 형태의 BTT 미사일용 최적 종말 유도 법칙)

  • Yoo, Seong-Jae;Hong, Jin-Woo;Ha, In-Joong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.3
    • /
    • pp.203-211
    • /
    • 2016
  • In contrast with STT missiles, the guidance law design for BTT missiles should be based on 3-dimensional pursuit kinematics, since the pitch and roll channels of BTT missiles are coupled dynamically. More generally than the prior works, the dynamics of pitch and roll channels, as well as 3-dimensional pursuit kinematics are considered in the design of our terminal-phase optimal guidance law for BTT missiles proposed in this paper. Thereby, the proposed optimal guidance law guarantees high capturability with small miss distance without significant performance degradation due to time-lag effect even in case of relatively slow autopilot dynamics. Moreover, the resulting optimal guidance law is expressed explicitly in feedback-form with the coefficients given as the functions of time-to-go. The effectiveness and practicality of our work is demonstrated through various simulation results.

A Study on Polar Converting Logic of BTT Missiles (BTT 유도탄의 하중계수 분배논리 연구)

  • Lee, Yong-In;Kim, Eul-Gon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.10
    • /
    • pp.77-82
    • /
    • 2004
  • This paper presents polar converting logic(PCL) of BTT missiles against slowly moving or stationary targets. A guidance commands expressed in rectangular coordinates must be converted in the form of polar coordinates for BTT control. Since conventional PCL has nonlinear and discontinuous function, the missiles may lose controllability when pitch acceleration command equals to zero. Further, roll coupling may have a serious unstabilizing influence on homing guidance with two gimbals seeker. In this paper, a linear homotopy equation is introduced to improve the controllability and a command following performance at midcourse phase. We also design a PCL which is less sensitive to pitch acceleration command so that it may improve the stability of the homing loop. To substantiate our conclusion, results of the computer simulation have been illustrated.

A Gain-Scheduled Autopilot Design for a Bank-To-Turn Missile Using LMI Optimization and Linear Interpolation

  • Shin, Myoung-Ho;Chung, Myung-Jin;Lee, Chiul-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.48.3-48
    • /
    • 2001
  • A gain-scheduled autopilot design for a bank-to-turn (BTT) missile is developed by using the Linear Matrix Inequality (LMI) optimization technique and a state-space lineal interpolation method. The missile dynamics are brought to a quasilinear parameter varying (quasi-LPV) form. Robust linear control design method is used to obtain state feedback controllers for the LPV systems with exogenous disturbances at the frozen values of the scheduling parameters. Two gam-scheduled controllers for the pitch axis and the yaw/roll axis are constructed by linearly interpolating the robust state-feedback gains. The designed controller is applied to a nonlinear six-degree-of-freedom (6-DOF) simulations.

  • PDF