• 제목/요약/키워드: BSCCO 2212

검색결과 86건 처리시간 0.022초

플라즈마 용사 BSCCO(Bismuth Strontium Calcium Copper Oxide) 초전도 피막의 접합 특성 (Joining Characteristics of Plasma Sprayed BSCCO Superconducting Coatings)

  • 박정식;조창은;고영봉;박광순;박경채
    • 한국표면공학회지
    • /
    • 제46권5호
    • /
    • pp.181-186
    • /
    • 2013
  • We performed plasma spraying for 2001 (Bi:Cu = 2:1), 0212 (Sr:Ca:Cu = 2:1:2) oxide powders. $Bi_2Sr_2CaCu_2Ox$ (2212) superconductor has been prepared by PMP-AT (partial melting process-annealing treatment). The 2212 phase is synthesized between Sr-Ca-Cu oxide coating layer (0212) and Bi-Cu oxide coating layer (2001) by movement of partial melted Bi on 2001 layer and the diffusion reaction (Cu, Sr, Ca) after PMP-AT. There are two different coating layers on joining process. The one is ABAB coating layers and the other is BAAB coating layers by arrangement of 2001 (A), 0212 (B) layers. We performed heat treatment these two different coating layers processes under same PMP-AT conditions. We obtained Bi-2212 superconducting layers at each experimental condition, and the result of MPMS, the critical temperature was showed about 78 K. But the microstructure images and result of EDS as each experimental variable were showed about the qualitatively different Bi-2212 superconducting phases. We also deduced the generation mechanism of Bi-2212 superconducting layer as a result of these experimental data, microstruc ture images, EDS data and phase diagram.

Analysis of Bi-Superconducting Thin Films Fabricated by Using the Layer by Layer Deposition and Evaporation Deposition Method

  • Yang, Seung-Ho;Cheon, Min-Woo;Lee, Ho-Shik;Park, Yong-Pil
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2007년도 춘계종합학술대회
    • /
    • pp.517-520
    • /
    • 2007
  • The BSCCO thin film fabricated by using the layer by layer deposition method was compared with the BSCCO thin film fabricated by using the evaporation method. Reevaporation in the form of Bi atoms or $Bi_2O_3$molecules easily bring out the deficiency of Bi atoms in thin film due to the long sputtering time of the layer by layer deposition. On the other hand, the respective atom numbers corresponding to BSCCO phase is concurrently supplied on the film surface in the evaporation deposition process and leads to BSCCO phase formation. Also, it is cofirmed that by optimizing the deposition condition, each single phase of the Bi2201 phase and the Bi2212 phase can be fabricated, the sticking coefficient of Bi element is clearly related to the changing of substrate temperature and the formation of the Bi2212 phase.

  • PDF

Bi 초전도 박막의 부착계수 해석 (Analysis of Sticking Coefficient in Bi-Superconducting Thin film)

  • 천민우;박용필;이성일
    • 한국전기전자재료학회논문지
    • /
    • 제15권11호
    • /
    • pp.997-1002
    • /
    • 2002
  • BSCCO thin films are fabricated by an ion beam sputtering method, and sticking coefficients of the respective elements are evaluated. The sticking coefficient of Bi element in BSCCO film formation was observed to show a unique temperature dependence; it was almost a constant value of 0.49 below about 730$^{\circ}C$ and decreased linearly over about 730$^{\circ}C$ In contrast, Sr and Ca, displayed no such remarkable temperature dependence. This behavior of the sticking coefficient was explained consistently on the basis of the evaporation and sublimation processes of Bi$\sub$2/O$\sub$3/. It was concluded that Bi(2212) thin film constructs from the partial melted Bi(2201) phase with the aid of the liquid phase of Bi$\sub$2/O$\sub$3/.

Evaluation of Sticking Coefficient in BSCCO Thin Film Fabricated by Co-sputtering

  • Lee, Hee-Kab;Park, Yong-Pil;Lee, Kwon-Hyun;Lee, Joon-Ung
    • 한국전기전자재료학회논문지
    • /
    • 제13권1호
    • /
    • pp.80-84
    • /
    • 2000
  • BSCCO thin films are fabricated via a co-deposition process by an ion beam sputtering with an ultra-low growth rate, and sticking coefficients of the respective elements are evaluated. The sticking coeffi-cient of Bi element exhibits a characteristic temperature dependence : almost a constant value of 0.49 below 73$0^{\circ}C$ and decreases linearly with temperature over 73$0^{\circ}C$. This temperature dependence can be elucidated from the evaporation and sublimation rates of bismuth oxide, Bi\ulcornerO\ulcorner, from the film surface. It is considered that the liquid phase of the bismuth oxide plays an important role in the Bi(2212) phase formation in the co-deposition process.

  • PDF

동시 증착으로 제작한 BSCCO 박막의 초전도 특성 (Superconducting Characteristics of BSCCO Thin Film Fabricated by Co-deposition)

  • 이희갑;이준웅;박용필
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 추계학술대회 논문집 학회본부 C
    • /
    • pp.929-931
    • /
    • 1999
  • BSCCO thin films have been fabricated by co-deposition at an ultralow growth rate using ion beam sputtering(IBS) method. Bi 2212 phase appeared in the temperature range of 750 and $795^{\circ}C$ and single phase of Bi 2201 existed in the lower region than $785^{\circ}C$. Whereas, ozone gas pressure dependance on structural formation was scarcely observed regardless of the pressure variation. And high quality of c-axis oriented Bi 2212 thin film with $T_c$(onset) of about 90 K and $T_c$(zero) of about 45 K is obtained. Only a small amount of CuO in some films was observed as impurity, and no impurity phase such as $CaCuO_2$ was observed in all of the obtained films.

  • PDF

부분용융법을 이용한 BSCCO 초전도 튜브 특성 (Characteristics of BSCCO Superconductor Tube Using Partial Melting Process)

  • 박용민;장건익
    • 한국초전도저온공학회:학술대회논문집
    • /
    • 한국초전도저온공학회 2001년도 학술대회 논문집
    • /
    • pp.25-28
    • /
    • 2001
  • Bi-2212 HTS tube was fabricated by centrifugal forming process(CFP). As a variation of melt casting process(MCP) or centrifugal casting technique, the centrifugal forming process is a flexible method for manufacturing Bi-2212 bulk tubes and has been optimized to achieve smooth surface and uniform thickness. At this process, the slurry was prepared in the mixing ratio of 10:1 between Bi-2212 powder and binder and initially charged into the rotating mold under the speed of 300~450 rpm Heat-treatment was performed at the temperature ranges of 860 ~ $890^{\circ}C$ in air for partial melting. The HTS tube fabricated by centrifugal forming process at $890^{\circ}C$ under the rotating speed of 450 rpm was highly densified and the plate-like grains with more than 20$\mu$m were well oriented along the rotating axis. The measured Tc and Jc at 10K were around 85K and 3,000A/cm2 respectively.

  • PDF

MgO(100)기판에 성장시킨 Bi2212 에피택셜 박막의 R-T특성 (R-T characteristic of Bi2212 Epitaxial thin films by growth in MgO(100) substrate)

  • 양승호;임중관;박용필
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 하계학술대회 논문집 Vol.7
    • /
    • pp.537-538
    • /
    • 2006
  • BSCCO thin films have been fabricated by epitaxy growth at an ultra-low growth rate. The growth rates of the films was set in the region from 0.17 to 0.27 nm/min. MgO(100) was used as a substrate. In order to appreciate stable existing region of Bi 2212 phase with temperature and ozone pressure, the substrate temperature was varied between 650 and $720^{\circ}C$ and the highly condensed ozone gas pressure ($PO_3$) in vacuum chamber was varied between $2.0{\times}10^{-6}$ and $2.3{\times}10^{-5}\;Torr$.

  • PDF