• Title/Summary/Keyword: BS-MIMO

Search Result 62, Processing Time 0.023 seconds

Generalized User Selection Algorithm im Downlink Multiuser MIMo System (하향링크 다중 사용자 MIMO 시스템에서의 일반화된 사용자 선택 알고리즘)

  • Kang, Dae Geun;Shin, Change Ui;Kuem, Dong Hyun;Choi, Seung Won
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.8 no.4
    • /
    • pp.99-105
    • /
    • 2012
  • Recently, there are many user selection algorithms in multi user multiple-input multiple-output (MU-MIMO) systems. One of well-known user selection methods is Semi orthogonal user selection (SUS). It is an algorithm maximizing channel capacity. However, it is applicable only when user's antenna is one. We propose a generalized user selection algorithm regardless of the number of user's antennas. In the proposed scheme, Base station (Bs) selects the first user who has the highest determinant of channel and generates a user group that correlation with first user's channel is less than allowance of correlation. Then, each determinant of channels made up of first user's channel and a user's channel in the generated group is calculated and BS selects the next user who has the highest determinant of that. BS selects following users by repeating above procedure. In this paper, we get better performance because of selecting users who have the highest determinant of channel as well as allowance of correlation optimally calculated through matrix operations.

Optimal Number of Users in Zero-Forcing Based Multiuser MIMO Systems with Large Number of Antennas

  • Jung, Minchae;Kim, Younsun;Lee, Juho;Choi, Sooyong
    • Journal of Communications and Networks
    • /
    • v.15 no.4
    • /
    • pp.362-369
    • /
    • 2013
  • The optimal number of users achieving the maximum sum throughput is analyzed in zero-forcing (ZF) based multiuser multiple-input multiple-output (MIMO) systems with a large number of base station (BS) antennas. By utilizing deterministic ergodic sum rates for the ZF-beam forming (ZF-BF) and ZF-receiver (ZF-R) with a large number of BS antennas [1], [2], we can obtain the ergodic sum throughputs for the ZF-BF and ZF-R for the uplink and downlink frame structures, respectively. Then, we can also formulate and solve the optimization problems maximizing the ergodic sum throughputs with respect to the number of users. This paper shows that the approximate downlink sum throughput for the ZF-BF is a concave function and the approximate uplink sum throughput for the ZF-R is also a concave function in a feasible range with respect to the number of users. The simulation results verify the analyses and show that the derived numbers of users provide the maximum sum throughputs for the ZF-BF as well as ZF-R in multiuser MIMO systems with a large number of BS antennas.

Time Shifted Pilot Signal Transmission With Pilot Hopping To Improve The Uplink Performance of Massive MIMO System For Next Generation Network

  • Ruperee, Amrita;Nema, Shikha
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.9
    • /
    • pp.4390-4407
    • /
    • 2019
  • The paucity of pilot signals in Massive MIMO system is a vital issue. To accommodate substantial number of users, pilot signals are reused. This leads to interference, resulting in pilot contamination and degrades channel estimation at the Base Station (BS). Hence, mitigation of pilot contamination is exigency in Massive MIMO system. The proposed Time Shifted Pilot Signal Transmission with Pilot signal Hopping (TSPTPH), addresses the pilot contamination issue by transmitting pilot signals in non-overlapping time interval with hopping of pilot signals in each transmission slot. Hopping is carried by switching user to new a pilot signal in each transmission slot, resulting in random change of interfering users. This contributes to the change in channel coefficient, which leads to improved channel estimation at the BS and therefore enhances the efficiency of Massive MIMO system. In this system, Uplink Signal Power to Interference plus Noise Power Ratio (SINR) and data-rate are calculated for pilot signal reuse factor 1 and 3, by estimating the channel with Least Square estimation. The proposed system also reduces the uplink Signal power for data transmission of each User Equipment for normalized spectral efficiency with rising number of antennas at the BS and thus improves battery life.

Energy Efficiency Analysis of Antenna Selection Scheme in a Multi-User Massive MIMO Network (다중 사용자 거대 다중 안테나 네트워크에서 안테나 선택 기법의 에너지 효율 분석)

  • Jeong, Moo-woong;Ban, Tae-Won;Jung, Bang Chul
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.57-60
    • /
    • 2015
  • Recently, a multi-user massive MIMO (MU-Massive MIMO) network has been attracting tremendous interest as one of technologies to accommodate explosively increasing mobile data traffic. The MU-Massive MIMO network can significantly enhance the network capacity because a base station (BS) equipped with large-scale transmit antennas can transmit high-rate data to multiple users simultaneously. In the MU-Massive MIMO network, transmit antenna selection schemes are generally used to decrease the computational complexity and cost of the BS. In this paper, we investigate the energy efficiency of the transmit antenna selection scheme in the MU-Massive MIMO network and the optimal number of selected transmit antennas for maximizing the energy efficiency.

  • PDF

Maximum Ratio Transmission for Space-Polarization Division Multiple Access in Dual-Polarized MIMO System

  • Hong, Jun-Ki;Jo, Han-Shin;Mun, Cheol;Yook, Jong-Gwan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.8
    • /
    • pp.3054-3067
    • /
    • 2015
  • The phenomena of higher channel cross polarization discrimination (XPD) is mainly observed for future wireless technologies such as small cell network and massive multiple-input multiple-output (MIMO) system. Therefore, utilization of high XPD is very important and space-polarization division multiple access (SPDMA) with dual-polarized MIMO system could be a suitable solution to high-speed transmission in high XPD environment as well as reduction of array size at base station (BS). By SPDMA with dual-polarized MIMO system, two parallel data signals can be transmitted by both vertically and horizontally polarized antennas to serve different mobile stations (MSs) simultaneously compare to conventional space division multiple access (SDMA) with single-polarized MIMO system. This paper analyzes the performance of SPDMA for maximum ratio transmission (MRT) in time division duplexing (TDD) system by proposed dual-polarized MIMO spatial channel model (SCM) compare to conventional SDMA. Simulation results indicate that how SPDMA utilizes the high XPD as the number of MS increases and SPDMA performs very close to conventional SDMA for same number of antenna elements but half size of the array at BS.

Performance Analysis of MRT-Based Dual-Polarized Massive MIMO System with Space-Polarization Division Multiple Access

  • Hong, Jun-Ki
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.8
    • /
    • pp.4006-4020
    • /
    • 2018
  • In recent years, one of the most remarkable 5G technologies is massive multiple-input and multiple-output (MIMO) system which increases spectral efficiency by deploying a large number of transmit-antennas (eg. tens or hundreds transmit-antennas) at base station (BS). However, conventional massive MIMO system using single-polarized (SP) transmit-antennas increases the size of the transmit-array proportionally as the number of transmit-antennas increases. Hence, size reduction of large-scale transmit-array is one of the major concerns of massive MIMO system. To reduce the size of the transmit-array at BS, dual-polarized (DP) transmit-antenna can be the solution to halve the size of the transmit-array since one collocated DP transmit-antenna deploys vertical and horizontal transmit-antennas compared to SP transmit-antennas. Moreover, proposed DP massive MIMO system increases the spectral efficiency by not only in the space domain but also in the polarization domain whereas the conventional SP massive MIMO system increases the spectral efficiency by space domain only. In this paper, the comparative performance of DP and SP massive MIMO systems is analyzed by space division multiple access (SDMA) and space-polarization division multiple access (SPDMA) respectively. To analyze the performance of DP and SP massive MIMO systems, DP and SP spatial channel models (SCMs) are proposed which consider depolarized propagation channels between transmitter and receiver. The simulation results show that the performance of proposed 32 transmitter (Tx) DP massive MIMO system improves the spectral efficiency by about 91% for a large number of user equipments (UEs) compare to 32Tx SP massive MIMO system for identical size of the transmit-array.

Design of ESPAR Antenna using Patch Antenna and Performance Analysis of MIMO Communications (패치안테나를 이용한 ESPAR 안테나 설계와 MIMO 통신 성능 분석)

  • Keum, Hong-Sik;An, Changyoung;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.10
    • /
    • pp.579-584
    • /
    • 2014
  • In this paper, we propose beamsapce MIMO(mulitple input multiple output) system using patch ESPAR(Electronically Steerable Parasitic Array Radiator) antenna. When using conventional monopole ESPAR antenna, we have advantages cost of hardware and power consumption of RF cirsuit because of single RF chian. But it is difficult to apply to small portable mobile device. Therefore we design patch ESPAR antenna in order to reducing volume and analyze performance of BS MIMO system that is able to MIMO communication with single RF chain. In This paper, we confirm beam pattern of designed patch ESPAR antenna is steered as ${\pm}15^{\circ}$ elevation angle. Furthermore, we design BS MIMO system using this ESPAR antenna and confirm BER performance of this system.

Pilot Sequence Assignment for Spatially Correlated Massive MIMO Circumstances

  • Li, Pengxiang;Gao, Yuehong;Li, Zhidu;Yang, Dacheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.1
    • /
    • pp.237-253
    • /
    • 2019
  • For massive multiple-input multiple-output (MIMO) circumstances with time division duplex (TDD) protocol, pilot contamination becomes one of main system performance bottlenecks. This paper proposes an uplink pilot sequence assignment to alleviate this problem for spatially correlated massive MIMO circumstances. Firstly, a single-cell TDD massive MIMO model with multiple terminals in the cell is established. Then a spatial correlation between two channel response vectors is established by the large-scale fading variables and the angle of arrival (AOA) span with an infinite number of base station (BS) antennas. With this spatially correlated channel model, the expression for the achievable system capacity is derived. To optimize the achievable system capacity, a problem regarding uplink pilot assignment is proposed. In view of the exponential complexity of the exhaustive search approach, a pilot assignment algorithm corresponding to the distinct channel AOA intervals is proposed to approach the optimization solution. In addition, simulation results prove that the main pilot assignment algorithm in this paper can obtain a noticeable performance gain with limited BS antennas.

Transceiver Design Using Local Channel State Information at Relays for A Multi-Relay Multi-User MIMO Network

  • Cho, Young-Min;Yang, Janghoon;Kim, Dong Ku
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.11
    • /
    • pp.2616-2635
    • /
    • 2013
  • In this paper, we propose an iterative transceiver design in a multi-relay multi-user multiple-input multiple-output (MIMO) system. The design criterion is to minimize sum mean squared error (SMSE) under relay sum power constraint (RSPC) where only local channel state information (CSI)s are available at relays. Local CSI at a relay is defined as the CSI of the channel between BS and the relay in the $1^{st}$ hop link, and the CSI of the channel between the relay and all users in the $2^{nd}$ hop link. Exploiting BS transmitter structure which is concatenated with block diagonalization (BD) precoder, each relay's precoder can be determined using local CSI at the relay. The proposed scheme is based on sequential iteration of two stages; stage 1 determines BS transmitter and relay precoders jointly with SMSE duality, and stage 2 determines user receivers. We verify that the proposed scheme outperforms simple amplify-and-forward (SAF), minimum mean squared error (MMSE) relay, and an existing good scheme of [13] in terms of both SMSE and sum-rate performances.

Blind adaptive receiver for uplink multiuser massive MIMO systems

  • Shin, Joonwoo;Seo, Bangwon
    • ETRI Journal
    • /
    • v.42 no.1
    • /
    • pp.26-35
    • /
    • 2020
  • Herein, we consider uplink multiuser massive multiple-input multiple-output systems when multiple users transmit information symbols to a base station (BS) by applying simple space-time block coding (STBC). At the BS receiver, two detection filters for each user are used to detect the STBC information symbols. One of these filters is for odd-indexed symbols and the other for even-indexed symbols. Using constrained output variance metric minimization, we first derive a special relation between the closed-form optimal solutions for the two detection filters. Then, using the derived special relation, we propose a new blind adaptive algorithm for implementing the minimum output variance-based optimal filters. In the proposed adaptive algorithm, filter weight vectors are updated only in the region satisfying the special relation. Through a theoretical analysis of the convergence speed and a computer simulation, we demonstrate that the proposed scheme exhibits faster convergence speed and lower steady-state bit error rate than the conventional scheme.