• Title/Summary/Keyword: BRIDGE 3.0

Search Result 521, Processing Time 0.03 seconds

Coplanar Waveguides Fabricated on Oxidized Porous Silicon Air-Bridge for MMIC Application (다공질 실리콘 산화막 Air-Bridge 기판 위에 제작된 MMIC용 공면 전송선)

  • 박정용;이종현
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.5
    • /
    • pp.285-289
    • /
    • 2003
  • This paper proposes a 10 ${\mu}{\textrm}{m}$ thick oxide air-bridge structure which can be used as a substrate for RF circuits. The structure was fabricated by anodic reaction, complex oxidation and rnicrornachining technology using TMAH etching. High quality films were obtained by combining low temperature thermal oxidation (50$0^{\circ}C$, 1 hr at $H_2O$/O$_2$) and rapid thermal oxidation (RTO) process (105$0^{\circ}C$, 2 min). This structure is mechanically stable because of thick oxide layer up to 10 ${\mu}{\textrm}{m}$ and is expected to solve the problem of high dielectric loss of silicon substrate in RF region. The properties of the transmission line formed on the oxidized porous silicon (OPS) air-bridge were investigated and compared with those of the transmission line formed on the OPS layers. The insertion loss of coplanar waveguide (CPW) on OPS air-bridge was (about 1 dB) lower than that of CPW on OPS layers. Also, the return loss of CPW on OPS air-bridge was less than about - 20 dB at measured frequency region for 2.2 mm. Therefore, this technology is very promising for extending the use of CMOS circuitry to higher RF frequencies.

On the Hull Vibration of the Training Ship Sae-Ba-Da (실습선 새바다호의 선체진동에 관하여)

  • Park, Jung-Hui
    • Journal of Korea Fishing Vessel Association
    • /
    • v.29
    • /
    • pp.15-20
    • /
    • 1986
  • This paper describes on the measurement of the deck vibration produced by the main engine vibration of stern trawler MIS SAE-BA-DA (2,275GT, 3,600PS) while the ship is cruising and drifting. The obtained results are as follows; 1. The deck vibration level was the highest point at vertical line which pass main engine and the lowest point at vertical line which pass top bridge while the crusing. 2. The vibration source level of the main engine, screw shaft and screw propeller were respectively 110, 90 and 80% while the crusing. 3. The main deck vibration pressure level at the check points 2, 20, 30, 40, 60, 70, 80, 86m from the bow to stern was respectively 9, 8, 7, 10, 22, 45, 18, 23%. 4. The frequency distributions of the main engine, screw shaft, screw propeller vibration were from 3Hz to 10KHz, predominant frequency was 1KHz, each vibration accelration the highest level were respectively 1.3, 0.8, 0.5mm/$S^2$. 5. The predominant frequency distributions of the main deck, second deck, bridge deck and top bridge deck's vibration were from 10 to 30Hz, and each vibration accelration level were respe¬ctively 0.7, 0.05, 0.07, 0.04mm/$S^2$.

  • PDF

Bridge Resistance Deviation-to-Period Converter for Resistive Biosensors

  • Bae, Cheol-Soo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.7 no.4
    • /
    • pp.195-199
    • /
    • 2014
  • A bridge resistance deviation-to-period (BRD-to-P) converter is presented for interfacing resistive biosensors. It consists of a linear operational transconductance amplifier (OTA) and a current-controlled oscillator (CCO) formed by a current-tunable Schmitt trigger and an integrator. The free running period of the converter is 1.824 ms when the bridge offset resistance is $1k{\Omega}$. The conversion sensitivity of the converter amounts to $3.814ms/{\Omega}$ over the resistance deviation range of $0-1.2{\Omega}$. The linearity error of the conversion characteristic is less than ${\pm}0.004%$.

A Study on the Application Technique of Realtime Bridge Monitoring System based on GNSS (GNSS 기반의 실시간 교량변위 모니터링 시스템 적용기술 연구)

  • Yeon, Sang-Ho
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.1
    • /
    • pp.362-369
    • /
    • 2016
  • Recently, Last to check the security status of various medium and large bridge structures using various kinds of measurement equipment, but most of the methods are used to measure and check the displacement behavior of the bridge by a certain period. In this study, receive GPS satellite signals that can be observed in real time the whole region, a bridge to automatically measure the displacement and behavior characteristics of the structure in real-time in mm over the 24 hours, the measurement information and transmits the data to the wireless network, by making use, it was applied to the real-time monitoring system in connection with a bridge to be able to automatically notify GNSS fine displacement behavior. In fact, analysis and receives the measurement data to GNSS provided in the upper bridge of the middle and large-sized aging for this purpose, measuring USN and at the same time is converted into a three-dimensional position information of a test study was conducted to monitor the bridge displacement in real time. As a result, a vertical displacement of about 0.027~0.037m at the measurement time of day of the measurement point is that the repeated and confirmed.

A study on the Life Cycle Profiles(LCP) for RC Slab Bridge (철근콘크리트 슬래브교의 노후화 예측모델에 관한 연구)

  • Ahn, Young-Ki;Lee, Chae-Gue;Lee, Jin-Wan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.3
    • /
    • pp.251-262
    • /
    • 2003
  • LCP(Life Cycle Profiles) of bridge structures are indispensable for the LCC(Life Cycle Cost) evaluations of bridge system. The bridge under considerations may be newly-designed one or one in service. Thus, a systematic study of LCP is essential for both reliable LCC evaluation and strategic bridge management. LCP is mainly influenced by the structural environment in nature. However, in Korea, LCC evaluation has been performed with the LCP of foreign research results or only with the pieces of professional engineers' opinion. Therefore, to alleviate the drawbacks of foreign LCP and to enhance the reliability of current LCP, LCP should be established using the available data in bridge management system(BMS). In this study, LCP along with a subset of the BMS data was investigated and several mathematical expressions were proposed and evaluated. The condition ratings of a bridge were trasformed into the numerical indices through fuzzy logics with real field data. From the numerical results, it is concluded that the mathematical LCP model of $y=\sqrt{y^2_0-at}$ is shown to be the fittest one (R=0.815) to express the condition rating varied with the age. This has been drawn from the case study of slab bridges under the similar conditions.

Evaluation of Maximum Effective Temperature for Estimate Design Thermal Loads in Steel Box Girder Bridges (강상자형교의 설계온도하중을 위한 최고 유효온도 산정)

  • Lee, Seong-Haeng
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.8
    • /
    • pp.133-139
    • /
    • 2016
  • In order to obtain a reasonable value for the thermal load to use in designs, a bridge specimen of a full-size steel box girder (bridge) was manufactured. The temperature data were measured at 21 points in the bridge specimen and 19 points in the steel box bridge. The steel box bridge specimen was installed in a similar direction to a nearby real one. The maximum effective temperatures in the bridge specimen and bridge were calculated for air temperatures in the range of $24^{\circ}C{\sim}38^{\circ}C$. The maximum effective temperature of the bridge specimen and bridge showed correlations of approximately 93.2% and 87.4%, respectively, compared with the Euro code. The maximum effective temperature calculated in this study was very close to the Euro code and the maximum temperature of the Highway Bridge Design Criteria. When the effective temperature obtained in the study is combined with the highest temperature calculated from the Contour map for each region, the design criteria for the thermal load in domestic bridge design, taking into consideration the characteristics of each region, can be established.

The effect of compression load and rock bridge geometry on the shear mechanism of weak plane

  • Sarfarazi, Vahab;Haeri, Hadi;Shemirani, Alireza Bagher
    • Geomechanics and Engineering
    • /
    • v.13 no.3
    • /
    • pp.431-446
    • /
    • 2017
  • Rock bridges in rock masses would increase the bearing capacity of Non-persistent discontinuities. In this paper the effect of ratio of rock bridge surface to joint surface, rock bridge shape and normal load on failure behaviour of intermittent rock joint were investigated. A total of 42 various models with dimensions of $15cm{\times}15cm{\times}15cm$ of plaster specimens were fabricated simulating the open joints possessing rock bridge. The introduced rock bridges have various continuities in shear surface. The area of the rock bridge was $45cm^2$ and $90cm^2$ out of the total fixed area of $225cm^2$ respectively. The fabricated specimens were subjected to shear tests under normal loads of 0.5 MPa, 2 MPa and 4 MPa in order to investigate the shear mechanism of rock bridge. The results indicated that the failure pattern and the failure mechanism were affected by two parameters; i.e., the ratio of joint surface to rock bridge surface and normal load. So that increasing in joint area in front of the rock bridge changes the shear failure mode to tensile failure mode. Also the tensile failure change to shear failure by increasing the normal load.

Development of Bridge Warning System by Using GPS Surveying Method (GPS측량기법을 이용한 교량경보시스템 개발)

  • 서동주;노태호;이종출
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.20 no.4
    • /
    • pp.415-421
    • /
    • 2002
  • A recently lot of facilities have been constructed from rapidly development of science and economic growth. Among them, bridges are tending to be large because of geometrical problems of the road. And then the method of satellite surveying is being practical use variously out of present surveying methods. Therefore in this study it takes a measurement of bridge displacement using the RTK GPS Mode instead of the using mechanical measurement system. The observation value was verified by using Total Station to inspect observation value of RTK GPS. And then, by using the Delphi of object intending language, developed bridge warning system and applied it. The result of this study was found verification error of 0.2~8.3mm, therefore the measurement of bridge displacement of grand bridge can be applied by using An GPS.

Effects of the Symmetry of Muscle Activity by Application of Visual Feedback using Tension Sensor and Inclinometer during Bridge Exercise with Sling (슬링을 이용한 교각운동 시 장력센서와 경사계를 이용한 시각적 피드백이 근활성도에 미치는 영향)

  • Kwon, Yu-Jeong;Song, Min-Young
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.9 no.1
    • /
    • pp.133-140
    • /
    • 2021
  • Purpose: This study aimed to compare the relative muscle activity on the erector spinae, gluteus maximus, and hamstring, using a non-visual feedback bridge exercise and a visual feedback bridge exercise with a tension sensor and clinometer. Methods: Twenty-two healthy subjects participated in this study. The study subjects performed bridge exercises without visual feedback, bridge exercises using a tension sensor, and bridge exercises using an inclinometer in the supine position, and the muscle activity of the left and right erector spinae, gluteus maximus, and hamstring muscles was measured while maintaining isometric contraction during the bridge movement. Muscle activity was measured by using surface an electromyography equipment. To standardize the measured action potential of each muscle, the maximum voluntary isometric contraction was measured. The bridge exercise was repeated 3 times for 5s each. Using repeated analysis of variance, we compared the significant difference in EMG activity for each muscle between the three experiments, and all statistical processing was performed using SPSS version 26. The statistical significance level was set at α = 0.05. Results: During bridging exercises, the asymmetry of the muscle activity of the erector spinae and gluteus maximus during visual feedback guiding was lower than that during no visual feedback. However, there was no significant difference. Moreover, the asymmetry of the muscle activity of the hamstring muscles was significantly lower during tension sensor visual feedback than that during no visual feedback (p<0.05). Conclusion: These findings suggest that bridge exercise with visual feedback using a tension sensor and an inclinometer is effective in inducing symmetrical movement. When it is necessary to symmetrically adjust the weight load of both feet during the bridge exercise, it is effective to apply visual feedback using a tension sensor.

Responses of self-anchored suspension bridge to sudden breakage of hangers

  • Qiu, Wenliang;Jiang, Meng;Zhang, Zhe
    • Structural Engineering and Mechanics
    • /
    • v.50 no.2
    • /
    • pp.241-255
    • /
    • 2014
  • The girder of self-anchored suspension bridge is subjected to large compression force applied by main cables. So, serious damage of the girder due to breakage of hangers may cause collapse of the whole bridge. With the time increasing, the hangers may break suddenly for their resistance capacities decrease due to corrosion. Using nonlinear static and dynamic analysis methods and adopting 3D finite element model, the responses of a concrete self-anchored suspension bridge to sudden breakage of hangers are studied in this paper. The results show that the sudden breakage of a hanger has significant effects on tensions of the hangers next to the broken hanger, bending and torsion moments of the girder, moments of the towers and reaction forces of the bearings. The results obtained from dynamic analysis method are very different from those obtained from static analysis method. The maximum tension of hanger produced by breakage of a hanger exceeds 2.2 times of its initial value, the maximum dynamic amplification factor reaches 2.54, which is larger than the value of 2.0 recommended for cable-stayed bridge in PTI codes. If two adjacent hangers on the same side of bridge break one after another, the maximum tension of other hangers exceeds 3.0 times of its initial value. If the safety factor adopted to design hanger is too small, or the hangers have been exposed to corrosion, the bridge may collapse due to breakage of two adjacent hangers.