• 제목/요약/키워드: BQ Analysis

검색결과 121건 처리시간 0.024초

주요 5개 도시의 실내외 라돈농도 조사연구 (A Survey of Indoor and Outdoor Radon Concentrations in Five Major Cities)

  • 이철민;김윤신;박원석
    • 환경위생공학
    • /
    • 제17권3호
    • /
    • pp.75-82
    • /
    • 2002
  • This outline survey of indoor and outdoor radon concentrations in five major cities in Korea was carried out with Electrostatic Integrating Radon Monitor(EIRM) from February to December, 1996 and January to december, 1998. The mean indoor and outdoor radon concentrations in five major cities in 1996 were $21.9{\;}Bq/\textrm{m}^3$ and $9.6{\;}Bq/\textrm{m}^3$, respectively. The mean indoor and outdoor radon concentrations in 1998 were $20.8{\;}Bq/\textrm{m}^3$ and $9.0{\;}Bq/\textrm{m}^3$, respectively. These were below the U.S.EPA radon action level. The range of indoor to outdoor radon concentrations were $0.8{\;}Bq/\textrm{m}^3{\;}~{\;}45.6{\;}Bq/\textrm{m}^3$ in 1996, $0.5{\;}Bq/\textrm{m}^3{\;}~{\;}15.2{\;}Bq/\textrm{m}^3$ in 1998, respectively. The result of our analysis showed that radon concentrations in indoor air were clearly higher than those in outdoor air. Inspection of seasonal distribute pattern indicates the enhancement during winter relative to summer.

Analysis of Seasonal Airborne Radon Concentration Characteristics in Public-Use Facilities

  • Young-Do KIM;Woo-Taeg KWON
    • 웰빙융합연구
    • /
    • 제6권2호
    • /
    • pp.1-7
    • /
    • 2023
  • Purpose: The purpose of this study is to investigate the characteristics of airborne radon concentration by season in public-use facilities in South Korea. Research design, data and methodology: The data is provided by the public data portal, and public-use facilities nationwide where radon in the air is measured are specialized sanatorium for senior citizens, libraries, childcare facilities, postpartum care centers, medical institutions, funeral halls, underground shopping malls, and underground subway stations. Results: The facility with the highest radon concentration in public-use facilities was childcare facilities with an average of 50.2 ± 21.7 Bq/m3, while the average of medical institutions was the lowest at 24.8 ± 5.7 Bq/m3. The season with the largest difference in average radon concentration between childcare facilities and medical institutions was in the order of fall (28.6 Bq/m3), followed by winter (28.1 Bq/m3), spring (23.0 Bq/m3), and summer (22.0 Bq/m3). Conclusions: The main concentration levels of each public-use facility shown in this study are all below domestic and international standards, but there is a significant concentration difference between facilities. By season, winter showed the highest average concentration (40.6 ± 21.3 Bq/m3) and summer showed the lowest average concentration (23.8 ± 14.0 Bq/m3).

하나로에서 기체 방사성 폐기물 발생 현황 분석 (An Analysis on the Gaseous Radioactive Waste Occurrence Present Condition in HANARO)

  • 최호영;황승렬;강태진;이문
    • 한국방사성폐기물학회:학술대회논문집
    • /
    • 한국방사성폐기물학회 2003년도 가을 학술논문집
    • /
    • pp.556-561
    • /
    • 2003
  • 하나로의 출력 운전 이후 1996년부터 2002년까지 하나로에서 발생한 기체 방사성 폐기물의 양을 종류별로 정리하였다. 이 기간 동안 원자로실 및 RCI 굴뚝을 통해 환경으로 방출된 기체 방사성 폐기물은 Ar-41이 6.33E13 Bq, H-3이 5.10E12 Bq, I-131이 3.26E8 Bq 이었다.

  • PDF

다중 이용 건물 또는 지하 실내 공간의 용도에 따른 라돈 오염도 비교와 지하 공간의 시간대별 라돈 농도 변화 (Evaluation of Radon Levels in Various Public-acess Buildings or Underground Facilities, and Their Temporal Variation in Underground Facilities)

  • 최임조;신승호;조완근
    • Environmental Analysis Health and Toxicology
    • /
    • 제24권3호
    • /
    • pp.203-211
    • /
    • 2009
  • A lesser degree of research is available with respect to indoor radon characteristics associated with occupants' exposure. The present study evaluated the radon levels in several public-access buildings or underground facilities, and their temporal variation in underground facilities. Radon measurements were conducted in 2005 and 2006, utilizing a continuous radon detector. A solid alpha detector (RAD7) was utilized to measure indoor radon levels. The mean radon concentrations obtained from the building or facilities were in a descending order: platforms of Daegu subway line 2, 2005 (32 $Bq/m^3$), hot-air bathroom (14 $Bq/m^3$), basement of office building (14 $Bq/m^3$), underground parking garage (14 $Bq/m^3$), underground shop (12 $Bq/m^3$), nursery (10 $Bq/m^3$), platforms of Daegu subway line 2, 2006 (9.0 $Bq/m^3$), platforms of Daegu subway line 1, 2006 (8.9 $Bq/m^3$), supermarket (7.9 $Bq/m^3$), hospital (7.3 $Bq/m^3$), and second-floor of office building (5.7 $Bq/m^3$). In general, underground-level facilities exhibited higher radon levels as compared with ground-level facilities. It was suggested that ventilation is an important parameter regarding the indoor levels of a subway. There was a decreasing or increasing trend in hourly-radon levels in a subway, whereas no trend were observed in a basement of office building. In addition, the radon levels in the subway lines 1 and 2 varied according to the platforms. The radon levels in the present study were much lower than those of previous studies. The average annual effective dose (AED) of radiation from indoor radon exposure was estimated to be between 0.043 and 0.242 mSv/yr, depending on facility types. These AEDs were substantially lower than the worldwide average AED (2.4 mSv/yr).

벤조퀴논 포집 폴리에틸렌이민-탄소나노튜브 지지체 기반 효소촉매의 바이오연료전지로서의 성능평가 (Performance Evaluation of Biofuel cell using Benzoquinone Entrapped Polyethyleneimine-Carbon nanotube supporter Based Enzymatic Catalyst)

  • 안연주;정용진;권용재
    • Korean Chemical Engineering Research
    • /
    • 제55권2호
    • /
    • pp.258-263
    • /
    • 2017
  • 본 연구에서는 글루코스 산화효소(glucose oxidase, GOx), 고분자인 폴리에틸렌이민(polyethyleneimine, PEI), 카본나노튜브(carbon nanotube, CNT)와 벤조퀴논(benzoquinone, BQ)을 이용하여 글루코스 바이오연료전지를 위한 바이오 촉매를 합성하였다. 이를 위해, 지지체인 PEI/CNT 복합체에 BQ를 정전기적 인력을 통해 물리적으로 포집한 뒤, GOx를 담지시켜 합성하였다. 이는 기존에 전자 매개체로서 전해질에 풀어서 사용했던 BQ를 전해질이 아닌 촉매 내에 포집하여 촉매를 구성하였다는 개선점이 크며, 그 결과, BQ가 포집되지 않은 촉매 대비, 1.9배 상승한 $34.16{\mu}A/cm^2$의 최대전류밀도를 얻음을 통해 촉매활성이 개선되었음을 증명하였고, 바이오연료전지의 산화극 촉매로 이용 시, BQ가 포집되지 않은 촉매를 이용한 바이오연료전지에 비해 1.2배 상승한 $0.91mW/cm^2$의 최대출력밀도를 얻었다. 이를 통해 바이오연료전지의 산화극을 위한 촉매로서 GOx와 함께 담지된 매개체 BQ를 포함한 촉매 제조 가능성을 확인하였다.

환경시료 중 농산물에서 화학적 처리 방법에 의한 방사능 분석 (Radiation Analysis by Chemical Treatment of Agricultural Products in Environmental Samples)

  • 장은성;이효영
    • 한국방사선학회논문지
    • /
    • 제11권6호
    • /
    • pp.531-538
    • /
    • 2017
  • 원전 주변의 농경지에서 생산되는 농산물은 방사능 오염으로 인해 체내 방사능 오염을 유발할 가능성을 가질 수 있다. 이에 원전 주변에서 채취된 농산물을 건조 처리하여 섭취에 의한 내부피폭선량 평가를 위해 $^{90}Sr$의 방사능 농도의 한계치를 알아보고자 하였다. 감마동위원소 분석결과 모든 시료에서 인공핵종은 검출되지 않았으며, 쌀에서 < 0.0166~0.0336 Bq/kg-fresh, 배추에서 <0.00586~0.0421 Bq/kg-fresh, 열무에서 <0.0135 ~0.106 Bq/kg-fresh, 배에서 0.0114 ~ 0.0901 Bq/kg-fresh 로서 평상변동범위 수준이었다. 일반인에 대한 연간 선량한도인 1.0 mSv 대비 쌀, 배추, 열무의 $^{90}Sr$에 대해 각각 0.0177%, 0.0222%, 0.0376%, 0.00243%가 나왔으며, 이 값은 일반인에 대한 법적 기준치 $1mSv/yr{\cdot}man$ 비해 0.1 % 미만의 값이 나타났다. 따라서 식생활에서 음식 섭취량 또는 연령을 고려하여 어린이, 어른이 섭취하는 식품에 대한 폭넓은 평가가 필요할 것으로 사료된다.

지각방사선(라돈) 참조준위별 저감 대책에 따른 비용 편익 분석 (Cost-benefit Analysis on Occupational Reference Levels for Radon)

  • 최은희;정은교;김수근;정명희
    • 한국산업보건학회지
    • /
    • 제29권1호
    • /
    • pp.57-68
    • /
    • 2019
  • Objective: The purpose of this study is to propose the benefits of reduction measures according to the occupational radon reference level in order to present basic data for radon management guidelines considering domestic circumstances. Methods: This study uses radon data measured in the subway stations from 2015 to 2016. Of the total of 4,643 cases, 4,231 cases were analyzed excluding the 412 cases where the values were below $300Bq/m^3$. Results: Cost-Benefit analysis was done on the results of the field survey on subway work sites. At the exposure level of $400Bq/m^3$, the ratio between the cost and the benefit was highest at 1 : 1.81(the cost was KRW 1,398,568,032, while the benefit KRW 2,5248,772,841). At the exposure level of $600Bq/m^3$, the ratio of cost and benefit was 1: 1.80, at $300Bq/m^3$ it was 1.72, at $800Bq/m^3$ it was 1.71, at $200Bq/m^3$ it was 1.54, and at $100Bq/m^3$ it was 1.40. Conclusions: Radon management in the workplace provides economic benefits and appropriate reduction strategies are needed. In addition, it is necessary to establish and distribute radon exposure assessment procedures and guidelines for the safety and health of employees when exceeding the exposure standard, and guidelines for radon management in the workplace should be established.

국내 석탄연소 발전소에서 취급하는 천연방사성물질의 방사능 농도 분석 (Analysis of Radioactivity Concentration in Naturally Occurring Radioactive Materials Used in Coal-Fired Plants in Korea)

  • 김용건;김시영;지승우;박일;김민준;김광표
    • 방사선산업학회지
    • /
    • 제10권4호
    • /
    • pp.173-179
    • /
    • 2016
  • Coals and coal ashes, raw materials and by-products, in coal-fired power plants contain naturally occurring radioactive materials (NORM). They may give rise to internal exposure to workers due to inhalation of airborne particulates containing radioactive materials. It is necessary to characterize radioactivity concentrations of the materials for assessment of radiation dose to the workers. The objective of the present study was to analyze radioactivity concentrations of coals and by-products at four coal-fired plants in Korea. High purity germanium detector was employed for analysis of uranium series, thorium series, and potassium 40 in the materials. Radioactivity concentrations of $^{226}Ra$, $^{228}Ra$, and $^{40}K$ were $2{\sim}53Bq\;kg^{-1}$, $3{\sim}64Bq\;kg^{-1}$, and $14{\sim}431Bq\;kg^{-1}$ respectively in coal samples. For coal ashes, the radioactivity concentrations were $77{\sim}133Bq\;kg^{-1}$, $77{\sim}105Bq\;kg^{-1}$, and $252{\sim}372Bq\;kg^{-1}$ in fly ash samples and $54{\sim}91Bq\;kg^{-1}$, $46{\sim}83Bq\;kg^{-1}$, and $205{\sim}462Bq\;kg^{-1}$ in bottom ash samples. For flue gas desulfurization (FGD) gypsum, the radioactivity concentrations were $3{\sim}5Bq\;kg^{-1}$, $2{\sim}3Bq\;kg^{-1}$, and $22{\sim}47Bq\;kg^{-1}$. Radioactivity was enhanced in coal ash compared with coal due to combustion of organic matters in the coal. Radioactivity enhancement factors for $^{226}Ra$, $^{228}Ra$, and $^{40}K$ were 2.1~11.3, 2.0~13.1, and 1.4~7.4 for fly ash and 2.0~9.2, 2.0~10.0, 1.9~7.7 for bottom ash. The database established in this study can be used as basic data for internal dose assessment of workers at coal-fired power plants. In addition, the findings can be used as a basic data for development of safety standard and guide of Natural Radiation Safety Management Act.

Radiochemical Analysis of Filters Used During the Decommissioning of Research Reactors for Disposal

  • Kyungwon Suh;Jung Bo Yoo;Kwang-Soon Choi;Gi Yong Kim;Simon Oh;Kanghyun Yoo;Kwang Eun Lee;Shinkyoung Lee;Young Sang Lee;Hyeju Lee;Junhyuck Kim;Kyunghun Jung;Sora Choi;Tae-Hong Park
    • 방사성폐기물학회지
    • /
    • 제20권4호
    • /
    • pp.489-500
    • /
    • 2022
  • The decommissioning of nuclear facilities produces various types of radiologically contaminated waste. In addition, dismantlement activities, including cutting, packing, and clean-up at the facility site, result in secondary radioactive waste such as filters, resin, plastic, and clothing. Determining of the radionuclide content of this waste is an important step for the determination of a suitable management strategy including classification and disposal. In this work, we radiochemically characterized the radionuclide activities of filters used during the decommissioning of Korea Research Reactors (KRRs) 1 and 2. The results indicate that the filter samples contained mainly 3H (500-3,600 Bq·g-1), 14C (7.5-29 Bq·g-1), 55Fe (1.1- 7.1 Bq·g-1), 59Ni (0.60-1.0 Bq·g-1), 60Co (0.74-70 Bq·g-1), 63Ni (0.60-94 Bq·g-1), 90Sr (0.25-5.0 Bq·g-1), 137Cs (0.64-8.7 Bq·g-1), and 152Eu (0.19-2.9) Bq·g-1. In addition, the gross alpha radioactivity of the samples was measured to be between 0.32-1.1 Bq·g-1. The radionuclide concentrations were below the concentration limit stated in the low- and intermediatelevel waste acceptance criteria of the Nuclear Safety and Security Commission, and used for the disposal of the KRRs waste drums to a repository site.

Analysis of Air Discharge and Disused Air Filters in Radioisotope Production Facility

  • Kim, Sung Ho;Lee, Bu Hyung;Kwon, Soo Il;Kim, Jae Seok;Kim, Gi-sub;Park, Min Seok;Jung, Haijo
    • 한국의학물리학회지:의학물리
    • /
    • 제27권3호
    • /
    • pp.156-161
    • /
    • 2016
  • When air discharged from a radioisotope production facility is contaminated with radiation, the public may be exposed to radiation. The objective of this study is to manage such radiation exposure. We measured the airborne radioactivity concentration at a 30 MeV cyclotron radioisotope production facility to assess whether the exhaust gas was contaminated. Additionally, we investigted the radioactive contamination of the air filter for efficient air purification and radiation safety control. To measure the airborne radiation concentration, specimens were collected weekly for 4 h after the beginning of the radioisotope production. Regarding the air purifier, five specimens were collected at different positions of each filter-pre-filter, high-efficiency particulate air filter, and charcoal filter-installed in the cyclotron production room. The concentrations of F-18, I-123, I-131, and Tl-201 generated in the radioiodine production room were $13.5Bq/m^3$, $27.0Bq/m^3$, $0.10Bq/m^3$, and $11.5Bq/m^3$, respectively; the concentrations of F-18, I-123, and I-131 produced in the radioisotope production room were $0.05Bq/m^3$, $16.1Bq/m^3$, and $0.45Bq/m^3$, correspondingly; and those of F-18, I-123, I-131, and Tl-201 generated in the accelerator room were $2.07Bq/m^3$, $53.0Bq/m^3$, $0.37Bq/m^3$, and $0.15Bq/m^3$, respectively. The maximum radiation concentration of I-123 generated in the radioiodine production room was 1,820 Bq/g, which can be disposed after 2 days. The maximum radiation concentration of Tl-202 generated in the radioisotope production room was 205 Bq/g, and this isotope must be stored for 53 days. The I-123 generated in the radioiodine production room had a maximum concentration of 1,530 Bq/g and must be stored for 2 days. The maximum radiation concentration of Na-22 generated in the radioisotope production room was 0.18 Bq/g and this isotope must be disposed after 827 days. To manage the exhaust, the efficiency of air purification must be enhanced by selecting an air purifier with a long life and determining the appropriate replacement time by examining the differential pressure through systematic measurements of the airborne radiation contamination level.