• Title/Summary/Keyword: BPN

Search Result 96, Processing Time 0.026 seconds

The Detection of Esophagitis by Using Back Propagation Network Algorithm

  • Seo, Kwang-Wook;Min, Byeong-Ro;Lee, Dae-Weon
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.11
    • /
    • pp.1873-1880
    • /
    • 2006
  • The results of this study suggest the use of a Back Propagation Network (BPN) algorithm for the detection of esophageal erosions or abnormalities - which are the important signs of esophagitis - in the analysis of the color and textural aspects of clinical images obtained by endoscopy. The authors have investigated the optimization of the learning condition by the number of neurons in the hidden layer within the structure of the neural network. By optimizing learning parameters, we learned and have validated esophageal erosion images and/or ulcers functioning as the critical diagnostic criteria for esophagitis and associated abnormalities. Validation was established by using twenty clinical images. The success rates for detection of esophagitis during calibration and during validation were 97.91% and 96.83%, respectively.

Determination the Opsition for Mobile Robot using a Neural Network (신경회로망을 이용한 이동로봇의 위치결정)

  • 이효진;이기성;곽한택
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1996.10a
    • /
    • pp.219-222
    • /
    • 1996
  • During the navigation of mobile robot, one of the essential task is to determination the absolute location of mobile robot. In this paper, we proposed a method to determine the position of the camera from a landmark through the visual image of a quadrangle typed landmark using neural network. In determining the position of the camera on the world coordinate, there is difference between real value and calculated value because of uncertainty in pixels, incorrect camera calibration and lens distortion etc. This paper describes the solution of the above problem using BPN(Back Propagation Network). The experimental results show the superiority of the proposed method in comparison to conventional method in the performance of determining camera position.

  • PDF

Size, Scale and Rotation Invariant Proposed Feature vectors for Trademark Recognition

  • Faisal zafa, Muhammad;Mohamad, Dzulkifli
    • Proceedings of the IEEK Conference
    • /
    • 2002.07c
    • /
    • pp.1420-1423
    • /
    • 2002
  • The classification and recognition of two-dimensional trademark patterns independently of their position, orientation, size and scale by proposing two feature vectors has been discussed. The paper presents experimentation on two feature vectors showing size- invariance and scale-invariance respectively. Both feature vectors are equally invariant to rotation as well. The feature extraction is based on local as well as global statistics of the image. These feature vectors have appealing mathematical simplicity and are versatile. The results so far have shown the best performance of the developed system based on these unique sets of feature. The goal has been achieved by segmenting the image using connected-component (nearest neighbours) algorithm. Second part of this work considers the possibility of using back propagation neural networks (BPN) for the learning and matching tasks, by simply feeding the feature vectosr. The effectiveness of the proposed feature vectors is tested with various trademarks, not used in learning phase.

  • PDF

High Impedance Fault Detection Using Neural Networks (신경회로망을 이용한 고저항 고장 검출)

  • Han, J.G.;Lee, H.S.;Yun, J.Y.;Yang, K.H.;Park, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.465-467
    • /
    • 1995
  • High impedance fault can not be easily detected by conventional method. But if it would not be detected and cleared quickly, it can result in fires, and electric shock. In this paper, ANN, which has learning capability, is used for high impedance fault detection. The potential of the neural network approach is demonstrated by simulation using KEPCO's measured data. Among ANN models used in this paper, CPN shows better result than BPN in respect of convergence and reliability.

  • PDF

Hemostatic Action of Torilis fructus (사상자 물추출물의 혈액 응고 작용)

  • 김환수;박병욱;김기협;박광식
    • YAKHAK HOEJI
    • /
    • v.39 no.1
    • /
    • pp.55-60
    • /
    • 1995
  • The acetone precipitates of the hot water extract of Torilis ftuctus showed strong hemostatic activity which was not inhibited by aspirin. This activity was not through platelet activation but possibly through activating some coagulation factors in plasma. The hemostatic action of the precipitates was not active by oral adminitration and no behavioral toxicity was appeared in treated mice. However, mice treated with the acetone precipitates through tail vein showed serious tremor and then were killed probably by the thrombus produced in the body. The hemostatic activity was still remained after treatment with $\beta$-glucosidase, $\beta$-alactosidase, $\alpha$-amylase, subtilisin BPN', or trypsin but completely lost by acid hydrolysis. The active components seemed to be a complex of unidentified macromolecules to which some phenolic compounds were strongly bound.

  • PDF

Fault Type Classification and Fault Distance Estimation for High Speed Relaying Using Neural Networks in Power Transmission Systems (신경회로망을 이용한 송전계통의 고속계전기용 고장유형분류 및 고장거리 추정방법)

  • Lee, H.S.;Yoon, J.Y.;Park, J.H.;Jang, B.T.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.808-810
    • /
    • 1996
  • In this paper, neural network, which has learning capability, is used for fault type classification and fault section estimation for high speed relaying. The potential of the neural network approach is demonstrated by simulation using ATP. The instantaneous values of voltages and currents are used the inputs of neural networks. This approach determines the fault section directly. In this paper, back-propagation network(BPN) is used for fault type classification and fault section estimation and can use for high speed relaying because it determines fault section within a few msec.

  • PDF

A Study on High Impedance Fault Detection Using Neural Networks in Power Distribution Systems (배전계통에서 신경회로망을 이용한 고저항 고장 검출에 관한 연구)

  • Lee, H.S.;Lee, S.S.;Park, J.H.;Jang, B.T.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.811-813
    • /
    • 1996
  • High impedance fault can not be easily detected by conventional method. But if it would not be detected and cleared quickly, it can result in fires, and electric shock. In this paper, neural network, which has learning capability, is used for high impedance fault detector. The potential of the neural network approach is demonstrated by simulation using KEPCO's measured data. The instantaneous values and frequency spectrum of current are respectively used as the inputs of neural networks. Also, the methods using combined data to exploit the advantage of each data are proposed. In this paper, back-propagation network(BPN) is used for high impedance fault detector and can use for high speed relay because it detects faults within 1 cycle.

  • PDF

A Performance Comparison of Backpropagation Neural Networks and Learning Vector Quantization Techniques for Sundanese Characters Recognition

  • Haviluddin;Herman Santoso Pakpahan;Dinda Izmya Nurpadillah;Hario Jati Setyadi;Arif Harjanto;Rayner Alfred
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.3
    • /
    • pp.101-106
    • /
    • 2024
  • This article aims to compare the accuracy of the Backpropagation Neural Network (BPNN) and Learning Vector Quantization (LVQ) approaches in recognizing Sundanese characters. Based on experiments, the level of accuracy that has been obtained by the BPNN technique is 95.23% and the LVQ technique is 66.66%. Meanwhile, the learning time that has been required by the BPNN technique is 2 minutes 45 seconds and then the LVQ method is 17 minutes 22 seconds. The results indicated that the BPNN technique was better than the LVQ technique in recognizing Sundanese characters in accuracy and learning time.

Bankruptcy Type Prediction Using A Hybrid Artificial Neural Networks Model (하이브리드 인공신경망 모형을 이용한 부도 유형 예측)

  • Jo, Nam-ok;Kim, Hyun-jung;Shin, Kyung-shik
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.3
    • /
    • pp.79-99
    • /
    • 2015
  • The prediction of bankruptcy has been extensively studied in the accounting and finance field. It can have an important impact on lending decisions and the profitability of financial institutions in terms of risk management. Many researchers have focused on constructing a more robust bankruptcy prediction model. Early studies primarily used statistical techniques such as multiple discriminant analysis (MDA) and logit analysis for bankruptcy prediction. However, many studies have demonstrated that artificial intelligence (AI) approaches, such as artificial neural networks (ANN), decision trees, case-based reasoning (CBR), and support vector machine (SVM), have been outperforming statistical techniques since 1990s for business classification problems because statistical methods have some rigid assumptions in their application. In previous studies on corporate bankruptcy, many researchers have focused on developing a bankruptcy prediction model using financial ratios. However, there are few studies that suggest the specific types of bankruptcy. Previous bankruptcy prediction models have generally been interested in predicting whether or not firms will become bankrupt. Most of the studies on bankruptcy types have focused on reviewing the previous literature or performing a case study. Thus, this study develops a model using data mining techniques for predicting the specific types of bankruptcy as well as the occurrence of bankruptcy in Korean small- and medium-sized construction firms in terms of profitability, stability, and activity index. Thus, firms will be able to prevent it from occurring in advance. We propose a hybrid approach using two artificial neural networks (ANNs) for the prediction of bankruptcy types. The first is a back-propagation neural network (BPN) model using supervised learning for bankruptcy prediction and the second is a self-organizing map (SOM) model using unsupervised learning to classify bankruptcy data into several types. Based on the constructed model, we predict the bankruptcy of companies by applying the BPN model to a validation set that was not utilized in the development of the model. This allows for identifying the specific types of bankruptcy by using bankruptcy data predicted by the BPN model. We calculated the average of selected input variables through statistical test for each cluster to interpret characteristics of the derived clusters in the SOM model. Each cluster represents bankruptcy type classified through data of bankruptcy firms, and input variables indicate financial ratios in interpreting the meaning of each cluster. The experimental result shows that each of five bankruptcy types has different characteristics according to financial ratios. Type 1 (severe bankruptcy) has inferior financial statements except for EBITDA (earnings before interest, taxes, depreciation, and amortization) to sales based on the clustering results. Type 2 (lack of stability) has a low quick ratio, low stockholder's equity to total assets, and high total borrowings to total assets. Type 3 (lack of activity) has a slightly low total asset turnover and fixed asset turnover. Type 4 (lack of profitability) has low retained earnings to total assets and EBITDA to sales which represent the indices of profitability. Type 5 (recoverable bankruptcy) includes firms that have a relatively good financial condition as compared to other bankruptcy types even though they are bankrupt. Based on the findings, researchers and practitioners engaged in the credit evaluation field can obtain more useful information about the types of corporate bankruptcy. In this paper, we utilized the financial ratios of firms to classify bankruptcy types. It is important to select the input variables that correctly predict bankruptcy and meaningfully classify the type of bankruptcy. In a further study, we will include non-financial factors such as size, industry, and age of the firms. Thus, we can obtain realistic clustering results for bankruptcy types by combining qualitative factors and reflecting the domain knowledge of experts.

Reversible DNA Information Hiding based on Circular Histogram Shifting (순환형 히스토그램 쉬프팅 기반 가역성 DNA 정보은닉 기법)

  • Lee, Suk-Hwan;Kwon, Seong-Geun;Kwon, Ki-Ryong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.12
    • /
    • pp.67-75
    • /
    • 2016
  • DNA computing technology makes the interests on DNA storage and DNA watermarking / steganography that use the DNA information as a newly medium. DNA watermarking that embeds the external watermark into DNA information without the biological mutation needs the reversibility for the perfect recovery of host DNA, the continuous embedding and detecting processing, and the mutation analysis by the watermark. In this paper, we propose a reversible DNA watermarking based on circular histogram shifting of DNA code values with the prevention of false start codon, the preservation of DNA sequence length, and the high watermark capacity, and the blind detection. Our method has the following features. The first is to encode nucleotide bases of 4-character variable to integer code values by code order. It makes the signal processing of DNA sequence easy. The second is to embed the multiple bits of watermark into -order coded value by using circular histogram shifting. The third is to check the possibility of false start codon in the inter or intra code values. Experimental results verified the our method has higher watermark capacity 0.11~0.50 bpn than conventional methods and also the false start codon has not happened in our method.