• Title/Summary/Keyword: BPN(Back Propagation Neural Network)

Search Result 32, Processing Time 0.026 seconds

Prediction of flow boiling heat transfer coefficient in horizontal channels varying from conventional to small-diameter scales by genetic neural network

  • Zhang, Jing;Ma, Yichao;Wang, Mingjun;Zhang, Dalin;Qiu, Suizheng;Tian, Wenxi;Su, Guanghui
    • Nuclear Engineering and Technology
    • /
    • v.51 no.8
    • /
    • pp.1897-1904
    • /
    • 2019
  • Three-layer back propagation network (BPN) and genetic neural network (GNN) were developed in this study to predict the flow boiling heat transfer coefficient (HTC) in conventional and small-diameter channels. The GNN has higher precision than BPN (with root mean square errors of 17.16% and 20.50%, respectively) and other correlations. The inputs include vapor quality x, mass flux G, heat flux q, diameter D and physical parameter φ, and the predicted flow boiling HTC is set as the outputs. Influences of input parameters on the flow boiling HTC are discussed based on the trained GNN: nucleate boiling promoted by a larger saturated pressure, a larger heat flux and a smaller diameter is dominant in small channels; convective boiling improved by a larger mass flux and a larger vapor quality is more significant in conventional channels. The HTC increases with pressure both in conventional and small channels. The HTC in conventional channels rises when mass flux increases but remains almost unaffected in small channels. A larger heat flux leads to the HTC growth in small channels and an increase of HTC was observed in conventional channels at a higher vapor quality. HTC increases inversely with diameter before dry out.

Construction of Personalized Recommendation System Based on Back Propagation Neural Network (역전파 신경망을 이용한 개인 맞춤형 상품 추천 시스템 구축)

  • Jung, Gwi-Im;Park, Sang-Sung;Shin, Young-Geun;Jang, Dong-Sik
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.12
    • /
    • pp.292-302
    • /
    • 2007
  • Thousands of studies on predicting information and products that are suitable for customers' preference have been actively proceeding. In massive information, unnecessary information should be removed to satisfy customers' needs. This Information filtering has been proceeding with several methods such as content-based and collaborative filtering etc. These conventional filtering methods have scarcity and scalability problems. Thus, this paper proposes a recommendation system using BPN to solve them. Data obtained by survey questionnaire are used as training data of neural network. The recommendation system using neural network is expected to recommend suitable products because it creates optimal network. Finally, the prototype for recommendation system based on neural network is proposed to collect data and recommend appropriate methods through survey questionnaire. As a result, this research improved the problems of conventional information filtering.

The Detection of Esophagitis by Using Back Propagation Network Algorithm

  • Seo, Kwang-Wook;Min, Byeong-Ro;Lee, Dae-Weon
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.11
    • /
    • pp.1873-1880
    • /
    • 2006
  • The results of this study suggest the use of a Back Propagation Network (BPN) algorithm for the detection of esophageal erosions or abnormalities - which are the important signs of esophagitis - in the analysis of the color and textural aspects of clinical images obtained by endoscopy. The authors have investigated the optimization of the learning condition by the number of neurons in the hidden layer within the structure of the neural network. By optimizing learning parameters, we learned and have validated esophageal erosion images and/or ulcers functioning as the critical diagnostic criteria for esophagitis and associated abnormalities. Validation was established by using twenty clinical images. The success rates for detection of esophagitis during calibration and during validation were 97.91% and 96.83%, respectively.

Robust Digital Image Watermarking Algorithm Using Neural Network (신경망을 이용한 강인한 디지털 이미지 워터마킹 알고리즘)

  • Piao, Cheng-Ri;Han, Seung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2927-2929
    • /
    • 2005
  • 본 논문에서는 디지털 영상의 소유권 보호를 위하여 양자화기법과 신경망을 적용하여 기존의 방법보다 강인한 워터마킹 기법을 제안하였다. 제안한 워터마킹 알고리즘은 시간영역에서 양자화 기법을 사용하여 워터마크를 삽입하고 추출하였고, back-propagation neural network(BPN)을 사용하여 워터마크를 검출하였나. 실험결과 압축공격에 강인하며, PSNR이 41dB이상으로서 비가시성을 만족함을 알 수 있었다.

  • PDF

BPN Based Approximate Optimization for Constraint Feasibility (구속조건의 가용성을 보장하는 신경망기반 근사최적설계)

  • Lee, Jong-Soo;Jeong, Hee-Seok;Kwak, No-Sung
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.141-144
    • /
    • 2007
  • Given a number of training data, a traditional BPN is normally trained by minimizing the absolute difference between target outputs and approximate outputs. When BPN is used as a meta-model for inequality constraint function, approximate optimal solutions are sometimes actually infeasible in a case where they are active at the constraint boundary. The paper describes the development of the efficient BPN based meta-model that enhances the constraint feasibility of approximate optimal solution. The modified BPN based meta-model is obtained by including the decision condition between lower/upper bounds of a constraint and an approximate value. The proposed approach is verified through a simple mathematical function and a ten-bar planar truss problem.

  • PDF

A Study on Intelligent Performance Diagnostics of a Gas Turbine Engine Using Neural Networks (신경회로망을 이용한 가스터빈 엔진의 지능형 성능진단에 관한 연구)

  • Kong, Chang-Duk;Kho, Seong-Hee;Ki, Ja-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.3
    • /
    • pp.51-57
    • /
    • 2004
  • An intelligent performance diagnostic computer program of a gas turbine using the NN(Neural Network) was developed. Recently on-condition performance monitoring of major gas path components using the GPA(Gas Path Analysis) method has been performed in analyzing of engine faults. However because the types and severities of engine faults are various and complex, it is not easy that all fault conditions of the engine would be monitored only by the GPA approach Therefore in order to solve this problem, application of using the NNs for learning and diagnosis would be required. Among then, a BPN (Back Propagation Neural Network) with one hidden layer, which can use an updating learning rate, was proposed for diagnostics of PT6A-62 turboprop engine in this work.

Financial Data Mining Using Time delay Neural Networks

  • Kim, Hyun-Jung;Shin, Kyung-Shik
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2001.01a
    • /
    • pp.122-127
    • /
    • 2001
  • This study investigates the effectiveness of time delay neural networks(TDNN) for the time dependent prediction domain. Although it is well-known fact that the back-propagation neural network(BPN) performs well in pattern recognition tasks, the method has some limitations in that it can only learn an input mapping of static (or spatial) patterns that are independent of time of sequences. The preliminary results show that the accuracy of TDNN is higher than the standard BPN with time lag. Our proposed approaches are demonstrated by the stork market prediction domain.

  • PDF

Prediction of expansion of electric arc furnace oxidizing slag mortar using MNLR and BPN

  • Kuo, Wen-Ten;Juang, Chuen-Ul
    • Computers and Concrete
    • /
    • v.20 no.1
    • /
    • pp.111-118
    • /
    • 2017
  • The present study established prediction models based on multiple nonlinear regressions (MNLRs) and backpropagation neural networks (BPNs) for the expansion of cement mortar caused by oxidization slag that was used as a replacement of the aggregate. The data used for the models were obtained from actual laboratory tests on specimens that were produced with water/cement ratios of 0.485 or 1.5, within which 0%, 10%, 20%, 30%, 40%, or 50% of the cement had been replaced by oxidization slag from electric-arc furnaces; the samples underwent high-temperature curing at either $80^{\circ}C$ or $100^{\circ}C$ for 1-4 days. The varied mixing ratios, curing conditions, and water/cement ratios were all used as input parameters for the expansion prediction models, which were subsequently evaluated based on their performance levels. Models of both the MNLR and BPN groups exhibited $R^2$ values greater than 0.8, indicating the effectiveness of both models. However, the BPN models were found to be the most accurate models.

Fault Type Classification and Fault Distance Estimation for High Speed Relaying Using Neural Networks in Power Transmission Systems (신경회로망을 이용한 송전계통의 고속계전기용 고장유형분류 및 고장거리 추정방법)

  • Lee, H.S.;Yoon, J.Y.;Park, J.H.;Jang, B.T.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.808-810
    • /
    • 1996
  • In this paper, neural network, which has learning capability, is used for fault type classification and fault section estimation for high speed relaying. The potential of the neural network approach is demonstrated by simulation using ATP. The instantaneous values of voltages and currents are used the inputs of neural networks. This approach determines the fault section directly. In this paper, back-propagation network(BPN) is used for fault type classification and fault section estimation and can use for high speed relaying because it determines fault section within a few msec.

  • PDF

A Study on High Impedance Fault Detection Using Neural Networks in Power Distribution Systems (배전계통에서 신경회로망을 이용한 고저항 고장 검출에 관한 연구)

  • Lee, H.S.;Lee, S.S.;Park, J.H.;Jang, B.T.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.811-813
    • /
    • 1996
  • High impedance fault can not be easily detected by conventional method. But if it would not be detected and cleared quickly, it can result in fires, and electric shock. In this paper, neural network, which has learning capability, is used for high impedance fault detector. The potential of the neural network approach is demonstrated by simulation using KEPCO's measured data. The instantaneous values and frequency spectrum of current are respectively used as the inputs of neural networks. Also, the methods using combined data to exploit the advantage of each data are proposed. In this paper, back-propagation network(BPN) is used for high impedance fault detector and can use for high speed relay because it detects faults within 1 cycle.

  • PDF