Browse > Article
http://dx.doi.org/10.1016/j.net.2019.06.009

Prediction of flow boiling heat transfer coefficient in horizontal channels varying from conventional to small-diameter scales by genetic neural network  

Zhang, Jing (Shaanxi Key Lab. of Advanced Nuclear Energy and Technology, Xi'an Jiaotong University)
Ma, Yichao (Shaanxi Key Lab. of Advanced Nuclear Energy and Technology, Xi'an Jiaotong University)
Wang, Mingjun (Shaanxi Key Lab. of Advanced Nuclear Energy and Technology, Xi'an Jiaotong University)
Zhang, Dalin (Shaanxi Key Lab. of Advanced Nuclear Energy and Technology, Xi'an Jiaotong University)
Qiu, Suizheng (Shaanxi Key Lab. of Advanced Nuclear Energy and Technology, Xi'an Jiaotong University)
Tian, Wenxi (Shaanxi Key Lab. of Advanced Nuclear Energy and Technology, Xi'an Jiaotong University)
Su, Guanghui (Shaanxi Key Lab. of Advanced Nuclear Energy and Technology, Xi'an Jiaotong University)
Publication Information
Nuclear Engineering and Technology / v.51, no.8, 2019 , pp. 1897-1904 More about this Journal
Abstract
Three-layer back propagation network (BPN) and genetic neural network (GNN) were developed in this study to predict the flow boiling heat transfer coefficient (HTC) in conventional and small-diameter channels. The GNN has higher precision than BPN (with root mean square errors of 17.16% and 20.50%, respectively) and other correlations. The inputs include vapor quality x, mass flux G, heat flux q, diameter D and physical parameter φ, and the predicted flow boiling HTC is set as the outputs. Influences of input parameters on the flow boiling HTC are discussed based on the trained GNN: nucleate boiling promoted by a larger saturated pressure, a larger heat flux and a smaller diameter is dominant in small channels; convective boiling improved by a larger mass flux and a larger vapor quality is more significant in conventional channels. The HTC increases with pressure both in conventional and small channels. The HTC in conventional channels rises when mass flux increases but remains almost unaffected in small channels. A larger heat flux leads to the HTC growth in small channels and an increase of HTC was observed in conventional channels at a higher vapor quality. HTC increases inversely with diameter before dry out.
Keywords
Back propagation network (BPN); Genetic neural network (GNN); Flow boiling heat transfer coefficient; Conventional channel; Small channel;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. Baby, C. Balaji, Thermal optimization of PCM based pin fin heat sinks: an experimental study, Appl. Therm. Eng. 54 (1) (2013) 65-77.   DOI
2 M. Mehrabi, M. Sharifpur, J.P. Meyer, Application of the FCM-based neurofuzzy inference system and genetic algorithm-polynomial neural network approaches to modelling the thermal conductivity of alumina-water nano-fluids, Int. Commun. Heat Mass Transf. 39 (7) (2012) 971-977.   DOI
3 A. Mirsepahi, L. Chen, B.K. O'Neill, A comparative artificial intelligence approach to inverse heat transfer modeling of an irradiative dryer, Int. Commun. Heat Mass Transf. 41 (2013) 19-27.   DOI
4 X.M. Dong, P.D. Juliana, D. Liu, J. Wang, Z.J. Zhang, Z.F. Tian, Numerical investigation of azimuthal heat conduction effects on CHF phenomenon in rod bundle channel, Ann. Nucl. Energy 121 (2018) 203-209.   DOI
5 G.M. Lazarek, S.H. Black, Evaporative heat transfer, pressure drop and critical heat flux in a small vertical tube with R-113, Int. J. Heat Mass Transf. 25 (7) (1982) 945-960.   DOI
6 X.F. Peng, B.X. Wang, Forced convection and flow boiling heat transfer for liquid flowing through microchannels, Int. J. Heat Mass Transf. 36 (14) (1993) 3421-3427.   DOI
7 K. Jambunathan, S.L. Hartle, S. Ashforth-Frost, V.N. Fontama, et al., Evaluating convective heat transfer coefficients using neural networks, Int. J. Heat Mass Transf. 39 (11) (1996) 2329-2332.   DOI
8 S.G. Kandlikar, Fundamental issues related to flow boiling in minichannels and microchannels, Exp. Therm. Fluid Sci. 26 (2) (2002) 389-407.   DOI
9 D. Mikielewicz, A new method for determination of flow boiling heat transfer coefficient in conventional-diameter channels and minichannels, Heat Transf. Eng. 31 (4) (2010) 276-287.   DOI
10 Y. Islamoglu, A new approach for the prediction of the heat transfer rate of the wire-on-tube type heat exchanger--use of an artificial neural network model, Appl. Therm. Eng. 23 (2) (2003) 243-249.   DOI
11 S.S. Sablani, A neural network approach for non-iterative calculation of heat transfer coefficient in fluid-particle systems, Chem. Eng. Process: Process Intensification 40 (4) (2001) 363-369.   DOI
12 G. Scalabrin, L. Piazza, Analysis of forced convection heat transfer to supercritical carbon dioxide inside tubes using neural networks, Int. J. Heat Mass Transf. 46 (7) (2003) 1139-1154.   DOI
13 W.J. Wang, L.X. Zhao, C.L. Zhang, Generalized neural network correlation for flow boiling heat transfer of R22 and its alternative refrigerants inside horizontal smooth tubes, Int. J. Heat Mass Transf. 49 (15) (2006) 2458-2465.   DOI
14 N. Amanifard, N. Nariman-Zadeh, M. Borji, et al., Modelling and Pareto optimization of heat transfer and flow coefficients in microchannels using GMDH type neural networks and genetic algorithms, Energy Convers. Manag. 49 (2) (2008) 311-325.   DOI
15 M. Balcilar, A.S. Dalkilic, S. Wongwises, Artificial neural network techniques for the determination of condensation heat transfer characteristics during downward annular flow of R134a inside a vertical smooth tube, Heat Mass Transf. 38 (1) (2011) 75-84.   DOI
16 J. Zhang, R.H. Chen, M.J. Wang, W.X. Tian, G.H. Su, et al., Prediction of LBB leakage for various conditions by genetic neural network and genetic algorithms, Nucl. Eng. Des. 325 (2017) 33-43.   DOI
17 Yao, A review of evolutionary artificial neural networks, Int. J. Intell. Syst. 8 (1993) 539-567.   DOI
18 Juergen Schmidhuber, Deep learning in neural networks: an overview, Neural Network. 61 (2015) 85-117.   DOI
19 S. Haykin, Neural Networks, Practice-Hall Press, New Jersey, 1999.
20 D.E. Goldberg, K. Deb, A comparative analysis of selection schemes used in genetic algorithms, in: G. Rawlins (Ed.), Foundations of Genetic Algorithms, Morgan Kaufmann, San Mateo, CA, 1992, pp. 69-93.
21 A. Greco, Convective boiling of pure and mixed refrigerants: an experimental study of the major parameters affecting heat transfer, Int. J. Heat Mass Transf. 51 (3) (2008) 896-909.   DOI
22 A.M. Jacobi, J.R. Thome, Heat transfer model for evaporation of elongated bubble flows in microchannels, J. Heat Transf. 124 (6) (2002) 1131-1136.   DOI
23 A.S. Pamitran, K.I. Choi, J.T. Oh, et al., Forced convective boiling heat transfer of R-410A in horizontal minichannels, Int. J. Refrig. 30 (1) (2007) 155-165.   DOI
24 R. Yun, H.J. Hyeok, Y. Kim, Evaporative heat transfer and pressure drop of R410A in microchannels, Int. J. Refrig. 29 (1) (2006) 92-100.   DOI
25 L.M. Zhang, Artificial Neural Network Model and its Application [M], Shanghai:Fu Dan University Press, 1993 (in Chinese).
26 M. Gui, Q.C. Bi, G. Zhu, J. Wang, T. Wang, Experimental investigation on heat transfer performance of C-shape tube immerged in a water pool, Nucl. Eng. Des. 346 (2019) 220-229.   DOI
27 A.S. Pamitran, K.I. Choi, J.T. Oh, Two-phase flow boiling heat transfer and pressure drop with R-407C, R-410A, R-22, and CO2 in horizontal minichannels, in: International Heat Transfer Conference 13, Begel House Inc, 2006.
28 J.P. Wattelet, Evaporative Characteristics of R-12, R-134a and a Mixture at Low Mass Fluxes, ASHRAE Transaction, 1994, pp. 603-615.
29 S.G. Kandlikar, A general correlation for saturated two-phase flow boiling heat transfer inside horizontal and vertical tubes, J. Heat Transf. 112 (1) (1990) 219-228.   DOI
30 D. Jung, R. Radermacher, Transport properties and surface tension of pure and mixed refrigerants, ASHRAE Trans. 97 (1) (1991) 90-99.
31 C.S. Kuo, C.C. Wang, In-tube evaporation of HCFC-22 in a 9.52 mm micro-fin/smooth tube, Int. J. Heat Mass Transf. 39 (12) (1996) 2559-2569.   DOI
32 M.H. Kim, J.S. Shin, Evaporating heat transfer of R22 and R410A in horizontal smooth and microfin tubes, Int. J. Refrig. 28 (6) (2005) 940-948.   DOI
33 K. Seo, Y. Kim, Evaporation heat transfer and pressure drop of R-22 in 7 and 9.52 mm smooth/micro-fin tubes, Int. J. Heat Mass Transf. 43 (16) (2000) 2869-2882.   DOI
34 A. Greco, G.P. Vanoli, Evaporation of refrigerants in a smooth horizontal tube: prediction of R22 and R507 heat transfer coefficients and pressure drop, Appl. Therm. Eng. 24 (14) (2004) 2189-2206.   DOI
35 H. Hu, G. Ding, K. Wang, Heat transfer characteristics of R410A-oil mixture flow boiling inside a 7mm straight microfin tube, Int. J. Refrig. 31 (6) (2008) 1081-1093.   DOI
36 A.S. Pamitran, K.I. Choi, J.T. Oh, et al., Two-phase flow heat transfer of propane vaporization in horizontal minichannels, J. Mech. Sci. Technol. 23 (3) (2009) 599-606.   DOI
37 T.N. Tran, M.W. Wambsganss, J.A. Jendrzejczyk, et al., in: Boiling Heat Transfer in a Small Horizontal Rectangular Channel (No. ANL/MCT/CP-78815; CONF-930830-27), Argonne National Lab., IL, 1993.
38 T.N. Tran, M.W. Wambsganss, D.M. France, Small circular-and rectangular-channel boiling with two refrigerants, Int. J. Multiph. Flow 22 (3) (1996) 485-498.   DOI
39 M. Wambsganss, J. Jendrzejczyk, T. Tran, et al., Boiling heat transfer in a horizontal small-diameter tube, J. Heat Transf. 115 (4) (1993) 963-972.   DOI
40 W. Zhang, T. Hibiki, K. Mishima, Correlation for flow boiling heat transfer in mini-channels, Int. J. Heat Mass Transf. 47 (26) (2004) 5749-5763.   DOI
41 S.G. Kandlikar, M. Steinke, Predicting Heat Transfer during Flow Boiling in Minichannels and Microchannels, 2003.
42 A.E. Bergles, V.J.H. Lienhard, G.E. Kendall, et al., Boiling and evaporation in small diameter channels, Heat Transf. Eng. 24 (1) (2003) 18-40.   DOI
43 K. Gungor, R. Winter, A general correlation for flow boiling in tubes and annuli, Int. J. Heat Mass Transf. 29 (3) (1986) 351-358.   DOI
44 G.H. Su, K. Fukuda, D. Jia, K. Morita, Application of an artificial neural network in reactor thermohydraulic problem: prediction of critical heat flux, J. Nucl. Sci. Technol. 39 (5) (2002) 564-571.   DOI
45 J.C. Chen, Correlation for boiling heat transfer to saturated fluids in convective flow, Ind. Eng. Chem. Process Des. Dev. 5 (3) (1966) 322-329.   DOI
46 M.M. Shah, Chart correlation for saturated boiling heat-transfer: equations and further study, ASHRAE Trans. 88 (1) (1982) 85-96.
47 L. Wojtan, T. Ursenbacher, J.R. Thome, Investigation of flow boiling in horizontal tubes: Part I - a new diabatic two-phase flow pattern map, Int. J. Heat Mass Transf. 48 (14) (2005a) 2955-2969.   DOI
48 Y. Kim, K. Seo, J.T. Chung, Evaporation heat transfer characteristics of R-410A in 7 and 9.52 mm smooth/micro-fin tubes, Int. J. Refrig. 25 (6) (2002) 716-730.   DOI
49 O. Zurcher, D. Favrat, J.R. Thome, Evaporation of refrigerants in a horizontal tube: an improved flow pattern dependent heat transfer model compared to ammonia data, Int. J. Heat Mass Transf. 45 (2) (2002) 303-317.   DOI
50 S.S. Bertsch, E.A. Groll, S.V. Garimella, Review and comparative analysis of studies on saturated flow boiling in small channels, Nanoscale Microscale Thermophys. Eng. 12 (3) (2008) 187-227.   DOI
51 Z.Y. Bao, D.F. Fletcher, B.S. Haynes, Flow boiling heat transfer of Freon R11 and HCFC123 in narrow passages, Int. J. Heat Mass Transf. 43 (18) (2000) 3347-3358.   DOI
52 L. Wojtan, T. Ursenbacher, J.R. Thome, Investigation of flow boiling in horizontal tubes: Part II - development of a new heat transfer model for stratifiedwavy, dryout and mist flow regimes, Int. J. Heat Mass Transf. 48 (14) (2005b) 2970-2985.   DOI
53 K.H. Bang, K.E. Hong, I.S. Hwang, Flow boiling of water in mini-channels: effect of pressure, in: Proceedings of the 5th International Conference on Nano-channels, Microchannels and Mini-channels, Puebla, Mexico, 2007.
54 K.H. Bang, K.K. Kim, S.K. Lee, et al., Pressure effect on flow boiling heat transfer of water in minichannels, Int. J. Therm. Sci. 50 (3) (2011) 280-286.   DOI
55 K.I. Choi, A.S. Pamitran, C.Y. Oh, et al., Boiling heat transfer of R-22, R-134a, and $CO_2$ in horizontal smooth minichannels, Int. J. Refrig. 30 (8) (2007) 1336-1346.   DOI
56 E.P.B. Filhoa, J.M.S. Jabardob, Convective boiling performance of refrigerant R-134a in herringbone and microfin copper tubes, Int. J. Refrig. 29 (1) (2006) 81-91.   DOI
57 D. Jung, Y. Cho, K. Park, Flow condensation heat transfer coefficients of R22, R134a, R407C, and R410A inside plain and microfin tubes, Int. J. Refrig. 27 (1) (2004) 25-32.   DOI
58 K. Kuwahara, S. Koyama, Y. Hashimoto, Characteristics of evaporation heat transfer and flow pattern of pure refrigerant HFC134a in a horizontal capillary tube, Fluid. Ther. Eng. 43 (4) (2000) 640-646.