• Title/Summary/Keyword: BP neural network

Search Result 215, Processing Time 0.029 seconds

Prediction of Wind Power by Chaos and BP Artificial Neural Networks Approach Based on Genetic Algorithm

  • Huang, Dai-Zheng;Gong, Ren-Xi;Gong, Shu
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.41-46
    • /
    • 2015
  • It is very important to make accurate forecast of wind power because of its indispensable requirement for power system stable operation. The research is to predict wind power by chaos and BP artificial neural networks (CBPANNs) method based on genetic algorithm, and to evaluate feasibility of the method of predicting wind power. A description of the method is performed. Firstly, a calculation of the largest Lyapunov exponent of the time series of wind power and a judgment of whether wind power has chaotic behavior are made. Secondly, phase space of the time series is reconstructed. Finally, the prediction model is constructed based on the best embedding dimension and best delay time to approximate the uncertain function by which the wind power is forecasted. And then an optimization of the weights and thresholds of the model is conducted by genetic algorithm (GA). And a simulation of the method and an evaluation of its effectiveness are performed. The results show that the proposed method has more accuracy than that of BP artificial neural networks (BP-ANNs).

A Study on Moldability Evaluation System in Injection Molding Based on Fuzzy Neural Network (퍼지 신경망을 이용한 성형성 평가 시스템에 관한 연구)

  • 강성남;허용정;조현찬
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.97-100
    • /
    • 1997
  • In order to predict the moldability of a injection molded part, a simulation of filling is needed. Especially when short shot is predicted by CAE simulation in the filling stage, there are mainly three ways to solve the problem. Modification of gate and runner, replacement of plastic resin, and adjustment of process conditions are the main ways. Among them, adjustment of process conditions is the most economic way in the cost and time since the mold doesn\\`t need t be modified at all. But it is difficult to adjust the process conditions appropriately in no times since it requires an empirical knowledge of injection molding. In this paper, a fuzzy neural network(FNN) based upon injection molding process is proposed to evaluate moldability in filling stage and also to solve the problem in case of short shot. An adequate mold temperature is generated through the fuzzy neural network where fill time and melt temperature are taken into considerations because process conditions affect each other.

  • PDF

Evolutionary Neural Network based on Quantum Elephant Herding Algorithm for Modulation Recognition in Impulse Noise

  • Gao, Hongyuan;Wang, Shihao;Su, Yumeng;Sun, Helin;Zhang, Zhiwei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.7
    • /
    • pp.2356-2376
    • /
    • 2021
  • In this paper, we proposed a novel modulation recognition method based on quantum elephant herding algorithm (QEHA) evolving neural network under impulse noise environment. We use the adaptive weight myriad filter to preprocess the received digital modulation signals which passing through the impulsive noise channel, and then the instantaneous characteristics and high order cumulant features of digital modulation signals are extracted as classification feature set, finally, the BP neural network (BPNN) model as a classifier for automatic digital modulation recognition. Besides, based on the elephant herding optimization (EHO) algorithm and quantum computing mechanism, we design a quantum elephant herding algorithm (QEHA) to optimize the initial thresholds and weights of the BPNN, which solves the problem that traditional BPNN is easy into local minimum values and poor robustness. The experimental results prove that the adaptive weight myriad filter we used can remove the impulsive noise effectively, and the proposed QEHA-BPNN classifier has better recognition performance than other conventional pattern recognition classifiers. Compared with other global optimization algorithms, the QEHA designed in this paper has a faster convergence speed and higher convergence accuracy. Furthermore, the effect of symbol shape has been considered, which can satisfy the need for engineering.

Numerical Research on Suppression of Thermally Induced Wavefront Distortion of Solid-state Laser Based on Neural Network

  • Liu, Hang;He, Ping;Wang, Juntao;Wang, Dan;Shang, Jianli
    • Current Optics and Photonics
    • /
    • v.6 no.5
    • /
    • pp.479-488
    • /
    • 2022
  • To account for the internal thermal effects of solid-state lasers, a method using a back propagation (BP) neural network integrated with a particle swarm optimization (PSO) algorithm is developed, which is a new wavefront distortion correction technique. In particular, by using a slab laser model, a series of fiber pumped sources are employed to form a controlled array to pump the gain medium, allowing the internal temperature field of the gain medium to be designed by altering the power of each pump source. Furthermore, the BP artificial neural network is employed to construct a nonlinear mapping relationship between the power matrix of the pump array and the thermally induced wavefront aberration. Lastly, the suppression of thermally induced wavefront distortion can be achieved by changing the power matrix of the pump array and obtaining the optimal pump light intensity distribution combined using the PSO algorithm. The minimal beam quality β can be obtained by optimally distributing the pumping light. Compared with the method of designing uniform pumping light into the gain medium, the theoretically computed single pass beam quality β value is optimized from 5.34 to 1.28. In this numerical analysis, experiments are conducted to validate the relationship between the thermally generated wavefront and certain pumping light distributions.

Water Quality Forecasting at Gongju station in Geum River using Neural Network Model (신경망 모형을 적용한 금강 공주지점의 수질예측)

  • An, Sang-Jin;Yeon, In-Seong;Han, Yang-Su;Lee, Jae-Gyeong
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.6
    • /
    • pp.701-711
    • /
    • 2001
  • Forecasting of water quality variation is not an easy process due to the complicated nature of various water quality factors and their interrelationships. The objective of this study is to test the applicability of neural network models to the forecasting of the water quality at Gongju station in Geum River. This is done by forecasting monthly water qualities such as DO, BOD, and TN, and comparing with those obtained by ARIMA model. The neural network models of this study use BP(Back Propagation) algorithm for training. In order to improve the performance of the training, the models are tested in three different styles ; MANN model which uses the Moment-Adaptive learning rate method, LMNN model which uses the Levenberg-Marquardt method, and MNN model which separates the hidden layers for judgement factors from the hidden layers for water quality data. the results show that the forecasted water qualities are reasonably close to the observed data. And the MNN model shows the best results among the three models tested

  • PDF

Internet Traffic Control Using Dynamic Neural Networks

  • Cho, Hyun-Cheol;Fadali, M. Sami;Lee, Kwon-Soon
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.285-291
    • /
    • 2008
  • Active Queue Management(AQM) has been widely used for congestion avoidance in Transmission Control Protocol(TCP) networks. Although numerous AQM schemes have been proposed to regulate a queue size close to a reference level, most of them are incapable of adequately adapting to TCP network dynamics due to TCP's non-linearity and time-varying stochastic properties. To alleviate these problems, we introduce an AQM technique based on a dynamic neural network using the Back-Propagation(BP) algorithm. The dynamic neural network is designed to perform as a robust adaptive feedback controller for TCP dynamics after an adequate training period. We evaluate the performances of the proposed neural network AQM approach using simulation experiments. The proposed approach yields superior performance with faster transient time, larger throughput, and higher link utilization compared to two existing schemes: Random Early Detection(RED) and Proportional-Integral(PI)-based AQM. The neural AQM outperformed PI control and RED, especially in transient state and TCP dynamics variation.

Adult Image Blocking using Feature Extraction based BP Neural Network (특징 추출 기반 BP 신경망을 이용한 성인 영상 차단)

  • Kim, Jong-Il;Lee, Jung-Suk;Ahn, Hyun-Sik;Jeong, Gu-Min;Kim, Do-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.349-351
    • /
    • 2005
  • 현재 다양한 인터넷 콘텐츠들에 의해 많은 정보가 공유되고 있으며, 유익한 정보들과 더불어 성인물과 같은 유해한 정보들이 있다. 이로 인하여 여러 문제점들이 야기되고 있으며, 이를 해결하기 위해 다양한 방법들이 제안되고 있다. 그 중에서 성인 영상 차단을 위한 연구도 많이 행해지고 있으며 주로 색상을 이용한 방법을 사용하고 있다. 그러나 살색과 유사한 영상이나 노출이 심한 영상에는 성인 영상 검출의 신뢰성이 떨어지는 단점을 갖는다. 본 논문에서는 이런 문제점을 해결하기 위해 새로운 성인 영상 차단 방법을 제안한다. 기존의 제안된 살색 검출을 이용한 방법을 기반으로 성인 영상물로 판정될 수 있는 신체 부위를 검출함으로써 강인한 성인 영상 차단을 한다. 신체 부위에 대한 판별을 위해 여러 기저 영상에서 특징 벡터를 추출하고. 이 벡터를 Back Propagation(BP) 신경망의 데이터로 이용하여 학습한다. 제안한 성인 영상 차단 방법의 성능을 여러 장의 살색과 유사한 색상의 물체 영상과 노출이 심한 영상, 성인 영상을 이용한 종합적인 실험 결과인 성인 영상 검출률을 통해 증명한다.

  • PDF

Cuffless Blood Pressure Estimation Based on a Convolutional Neural Network using PPG and ECG Signals for Portable or Wearable Blood Pressure Devices (휴대용 및 웨어러블 측정기를 위한 ECG와 PPG 신호를 활용한 합성곱 신경망 알고리즘 기반의 비가압식 혈압 추정 방법)

  • Cho, Jinwoo;Choi, Ahyoung
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.25 no.3
    • /
    • pp.1-10
    • /
    • 2020
  • In this paper, we propose an algorithm for estimating blood pressure using ECG (Electrocardiogram) and PPG (Photoplethysmography) signals. To estimate the BP (Blood pressure), we generate a periodic input signal, remove the noise according to the differential and threshold methods, and then estimate the systolic and diastolic blood pressures based on the convolutional neural network. We used 49 patient data of 3.1GB in the MIMIC database. As a result, it was found that the prediction error (RMSE) of systolic BP was 5.80mmHg, and the prediction error of diastolic BP was 2.78mmHg. This result confirms that the performance of class A is satisfied with the existing BP monitor evaluation method proposed by the British High Blood Pressure Association.

Comparison of BP and SOM as a Classification of PD Source (부분방전원의 분류에 있어서 BP와 SOM의 비교)

  • 박성희;강성화;임기조
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.9
    • /
    • pp.1006-1012
    • /
    • 2004
  • In this paper, neural networks is studied to apply as a PD source classification in XLPE power cable specimen. Two learning schemes are used to classification; BP(Back propagation algorithm), SOM(self organized map - kohonen network). As a PD source, using treeing discharge sources in the specimen, three defected models are made. And these data making use of a computer-aided discharge analyser, statistical and other discharge parameters is calculated to discrimination between different models of discharge sources. And a]so these distribution characteristics are applied to classify PD sources by two scheme of the neural networks. In conclusion, recognition efficiency of BP is superior to SOM.

Input-Output Linearization of Nonlinear Systems via Dynamic Feedback (비선형 시스템의 동적 궤환 입출력 선형화)

  • Cho, Hyun-Seob
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.6 no.4
    • /
    • pp.238-242
    • /
    • 2013
  • We consider the problem of constructing observers for nonlinear systems with unknown inputs. Connectionist networks, also called neural networks, have been broadly applied to solve many different problems since McCulloch and Pitts had shown mathematically their information processing ability in 1943. In this thesis, we present a genetic neuro-control scheme for nonlinear systems. Our method is different from those using supervised learning algorithms, such as the backpropagation (BP) algorithm, that needs training information in each step. The contributions of this thesis are the new approach to constructing neural network architecture and its training.