• Title/Summary/Keyword: BP algorithm

Search Result 240, Processing Time 0.02 seconds

Full face recognition using the feature extracted gy shape analyzing and the back-propagation algorithm (형태분석에 의한 특징 추출과 BP알고리즘을 이용한 정면 얼굴 인식)

  • 최동선;이주신
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.10
    • /
    • pp.63-71
    • /
    • 1996
  • This paper proposes a method which analyzes facial shape and extracts positions of eyes regardless of the tilt and the size of input iamge. With the extracted feature parameters of facial element by the method, full human faces are recognized by a neural network which BP algorithm is applied on. Input image is changed into binary codes, and then labelled. Area, circumference, and circular degree of the labelled binary image are obtained by using chain code and defined as feature parameters of face image. We first extract two eyes from the similarity and distance of feature parameter of each facial element, and then input face image is corrected by standardizing on two extracted eyes. After a mask is genrated line historgram is applied to finding the feature points of facial elements. Distances and angles between the feature points are used as parameters to recognize full face. To show the validity learning algorithm. We confirmed that the proposed algorithm shows 100% recognition rate on both learned and non-learned data for 20 persons.

  • PDF

Research on Pattern Elements and Colors in Apparel Design through Fractal Theory

  • Dan Li;Chengjun Yuan
    • Journal of Information Processing Systems
    • /
    • v.20 no.3
    • /
    • pp.409-417
    • /
    • 2024
  • Excellent apparel design can increase market competitiveness. This article briefly introduced the theory of fractals and its application in the field of apparel design. The convolutional neural network (CNN) algorithm was used to assist in the evaluation of apparel designs. In the case analysis, the accuracy of the evaluation was validated by comparing the CNN algorithm with two other intelligent algorithms, support vector machine (SVM) and back propagation (BP). The evaluation of the proposed design showed that compared with SVM and BP algorithms, the CNN algorithm had higher accuracy in evaluating apparel designs. The evaluation result of the proposed apparel design not only further verifies the effectiveness of the CNN algorithm, but also demonstrates that the theory of fractals can be effectively applied in apparel design to provide more innovative designs.

Comparison of error rates of various stereo matching methods for mobile stereo vision systems (모바일 스테레오 비전 시스템을 위한 다양한 스테레오 정합 기법의 오차율 비교)

  • Joo-Young, Lee;Kwang-yeob, Lee
    • Journal of IKEEE
    • /
    • v.26 no.4
    • /
    • pp.686-692
    • /
    • 2022
  • In this paper, the matching error rates of modified area-based, energy-based algorithms, and learning-based structures were compared for stereo image matching. Census transform (CT) based on region and life propagation (BP) algorithm based on energy were selected, respectively.Existing algorithms have been improved and implemented in an embedded processor environment so that they can be used for stereo image matching in mobile systems. Even in the case of the learning base to be compared, a neural network structure that utilizes small-scale parameters was adopted. To compare the error rates of the three matching methods, Middlebury's Tsukuba was selected as a test image and subdivided into non-occlusion, discontinuous, and disparity error rates for accurate comparison. As a result of the experiment, the error rate of modified CT matching improved by about 11% when compared with the existing algorithm. BP matching was about 87% better than conventional CT in the error rate. Compared to the learning base using neural networks, BP matching was about 31% superior.

Time-Delay and Amplitude Modified BP Imaging Algorithm of Multiple Targets for UWB Through-the-Wall Radar Imaging

  • Zhang, Huamei;Li, Dongdong;Zhao, Jinlong;Wang, Haitao
    • Journal of Information Processing Systems
    • /
    • v.13 no.4
    • /
    • pp.677-688
    • /
    • 2017
  • In order to solve the undetected probability of multiple targets in ultra-wideband (UWB) through-the-wall radar imaging (TWRI), a time-delay and amplitude modified back projection (BP) algorithm is proposed. The refraction point is found by Fermat's principle in the presence of a wall, and the time-delay is correctly compensated. On this basis, transmission loss of the electromagnetic wave, the absorption loss of the refraction wave, and the diffusion loss of the spherical wave are analyzed in detail. Amplitude compensation is deduced and tested on a model with a single-layer wall. The simulating results by finite difference time domain (FDTD) show that it is effective in increasing the scattering intensity of the targets behind the wall. Compensation for the diffusion loss in the spherical wave also plays a main role. Additionally, the two-layer wall model is simulated. Then, the calculating time and the imaging quality are compared between a single-layer wall model and a two-layer wall model. The results illustrate the performance of the time-delay and amplitude-modified BP algorithm with multiple targets and multiple-layer walls of UWB TWRI.

A Water-saving Irrigation Decision-making Model for Greenhouse Tomatoes based on Genetic Optimization T-S Fuzzy Neural Network

  • Chen, Zhili;Zhao, Chunjiang;Wu, Huarui;Miao, Yisheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.6
    • /
    • pp.2925-2948
    • /
    • 2019
  • In order to improve the utilization of irrigation water resources of greenhouse tomatoes, a water-saving irrigation decision-making model based on genetic optimization T-S fuzzy neural network is proposed in this paper. The main work are as follows: Firstly, the traditional genetic algorithm is optimized by introducing the constraint operator and update operator of the Krill herd (KH) algorithm. Secondly, the weights and thresholds of T-S fuzzy neural network are optimized by using the improved genetic algorithm. Finally, on the basis of the real data set, the genetic optimization T-S fuzzy neural network is used to simulate and predict the irrigation volume for greenhouse tomatoes. The performance of the genetic algorithm improved T-S fuzzy neural network (GA-TSFNN), the traditional T-S fuzzy neural network algorithm (TSFNN), BP neural network algorithm(BPNN) and the genetic algorithm improved BP neural network algorithm (GA-BPNN) is compared by simulation. The simulation experiment results show that compared with the TSFNN, BPNN and the GA-BPNN, the error of the GA-TSFNN between the predicted value and the actual value of the irrigation volume is smaller, and the proposed method has a better prediction effect. This paper provides new ideas for the water-saving irrigation decision in greenhouse tomatoes.

Self-Monitoring of Blood Pressure and Feed-back Using APP in TReatment of UnconTrolled Hypertension (SMART-BP): A Randomized Clinical Trial

  • Dong-Ju Choi;Jin Joo Park;Minjae Yoon;Sung-Ji Park;Sang-Ho Jo;Eung Ju Kim;Soo-Joong Kim;Sungyoung Lee
    • Korean Circulation Journal
    • /
    • v.52 no.10
    • /
    • pp.785-794
    • /
    • 2022
  • Background and Objectives: Self-monitoring of blood pressure (SMBP) is a reliable method used to assess BP accurately. However, patients do not often know how to respond to the measured BP value. We developed a mobile application-based feed-back algorithm (SMBP-App) for tailored recommendations. In this study, we aim to evaluate whether SMBP-App is superior to SMBP alone in terms of BP reduction and drug adherence improvement in patients with hypertension. Methods: Self-Monitoring of blood pressure and Feed-back using APP in Treatment of UnconTrolled Hypertension (SMART-BP) is a prospective, randomized, open-label, multicenter trial to evaluate the efficacy of SMBP-App compared with SMBP alone. Patients with uncomplicated essential hypertension will be randomly assigned to the SMBP-App (90 patients) and SMBP alone (90 patients) groups. In the SMBP group, the patients will perform home BP measurement and receive the standard care, whereas in the SMBP-App group, the patients will receive additional recommendations from the application in response to the obtained BP value. Follow-up visits will be scheduled at 12 and 24 weeks after randomization. The primary endpoint of the study is the mean home systolic BP. The secondary endpoints include the drug adherence, the home diastolic BP, home and office BP. Conclusions: SMART-BP is a prospective, randomized, open-label, multicenter trial to evaluate the efficacy of SMBP-App. If we can confirm its efficacy, SMBP-App may be scaled-up to improve the treatment of hypertension.

A Study on the Partial Discharge Pattern Recognition by Use of SOM Algorithm (SOM 알고리즘을 이용한 부분방전 패턴인식에 대한 연구)

  • Kim Jeong-Tae;Lee Ho-Keun;Lim Yoon Seok;Kim Ji-Hong;Koo Ja-Yoon
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.10
    • /
    • pp.515-522
    • /
    • 2004
  • In this study, we tried to investigate that the advantages of SOM(Self Organizing Map) algorithm such as data accumulation ability and the degradation trend trace ability would be adaptable to the analysis of partial discharge pattern recognition. For the purpose, we analyzed partial discharge data obtained from the typical artificial defects in GIS and XLPE power cable system through SOM algorithm. As a result, partial discharge pattern recognition could be well carried out with an acceptable error by use of Kohonen map in SOM algorithm. Also, it was clarified that the additional data could be accumulated during the operation of the algorithm. Especially, we found out that the data accumulation ability of Kohonen map could make it possible to suggest new patterns, which is impossible through the conventional BP(Back Propagation) algorithm. In addition, it is confirmed that the degradation trend could be easily traced in accordance with the degradation process. Therefore, it is expected to improve on-site applicability and to trace real-time degradation trends using SOM algorithm in the partial discharge pattern recognition

Structural identification based on substructural technique and using generalized BPFs and GA

  • Ghaffarzadeh, Hosein;Yang, T.Y.;Ajorloo, Yaser Hosseini
    • Structural Engineering and Mechanics
    • /
    • v.67 no.4
    • /
    • pp.359-368
    • /
    • 2018
  • In this paper, a method is presented to identify the physical and modal parameters of multistory shear building based on substructural technique using block pulse generalized operational matrix and genetic algorithm. The substructure approach divides a complete structure into several substructures in order to significantly reduce the number of unknown parameters for each substructure so that identification processes can be independently conducted on each substructure. Block pulse functions are set of orthogonal functions that have been used in recent years as useful tools in signal characterization. Assuming that the input-outputs data of the system are known, their original BP coefficients can be calculated using numerical method. By using generalized BP operational matrices, substructural dynamic vibration equations can be converted into algebraic equations and based on BP coefficient for each story can be estimated. A cost function can be defined for each story based on original and estimated BP coefficients and physical parameters such as mass, stiffness and damping can be obtained by minimizing cost functions with genetic algorithm. Then, the modal parameters can be computed based on physical parameters. This method does not require that all floors are equipped with sensor simultaneously. To prove the validity, numerical simulation of a shear building excited by two different normally distributed random signals is presented. To evaluate the noise effect, measurement random white noise is added to the noise-free structural responses. The results reveal the proposed method can be beneficial in structural identification with less computational expenses and high accuracy.

Speeding-up for error back-propagation algorithm using micro-genetic algorithms (미소-유전 알고리듬을 이용한 오류 역전파 알고리듬의 학습 속도 개선 방법)

  • 강경운;최영길;심귀보;전홍태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.853-858
    • /
    • 1993
  • The error back-propagation(BP) algorithm is widely used for finding optimum weights of multi-layer neural networks. However, the critical drawback of the BP algorithm is its slow convergence of error. The major reason for this slow convergence is the premature saturation which is a phenomenon that the error of a neural network stays almost constant for some period time during learning. An inappropriate selections of initial weights cause each neuron to be trapped in the premature saturation state, which brings in slow convergence speed of the multi-layer neural network. In this paper, to overcome the above problem, Micro-Genetic algorithms(.mu.-GAs) which can allow to find the near-optimal values, are used to select the proper weights and slopes of activation function of neurons. The effectiveness of the proposed algorithms will be demonstrated by some computer simulations of two d.o.f planar robot manipulator.

  • PDF

Memory-Efficient Belief Propagation for Stereo Matching on GPU (GPU 에서의 고속 스테레오 정합을 위한 메모리 효율적인 Belief Propagation)

  • Choi, Young-Kyu;Williem, Williem;Park, In Kyu
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2012.11a
    • /
    • pp.52-53
    • /
    • 2012
  • Belief propagation (BP) is a commonly used global energy minimization algorithm for solving stereo matching problem in 3D reconstruction. However, it requires large memory bandwidth and data size. In this paper, we propose a novel memory-efficient algorithm of BP in stereo matching on the Graphics Processing Units (GPU). The data size and transfer bandwidth are significantly reduced by storing only a part of the whole message. In order to maintain the accuracy of the matching result, the local messages are reconstructed using shared memory available in GPU. Experimental result shows that there is almost an order of reduction in the global memory consumption, and 21 to 46% saving in memory bandwidth when compared to the conventional algorithm. The implementation result on a recent GPU shows that we can obtain 22.8 times speedup in execution time compared to the execution on CPU.

  • PDF