• Title/Summary/Keyword: BP(Bipolar Plate)

Search Result 11, Processing Time 0.028 seconds

Development of Thermoplastic Carbon Composite Hybrid Bipolar Plate for Vanadium Redox Flow Batteries (VRFB) (바나듐 레독스 흐름전지용 열가소성 탄소 복합재료 하이브리드 분리판 개발)

  • Jun Woo Lim
    • Composites Research
    • /
    • v.36 no.6
    • /
    • pp.422-428
    • /
    • 2023
  • The electrical contact resistance between the bipolar plate (BP) and the carbon felt electrode (CFE), which are in contact by the stack clamping pressure, has a great impact on the stack efficiency because of the relatively low clamping pressure of the vanadium redox flow battery (VRFB) stack. In this study, a polyethylene (PE) composite-CFE hybrid bipolar plate structure is developed through a local heat welding process to reduce such contact resistance and improve cell performance. The PE matrix of the carbon fiber composite BP is locally melted to create a direct contact structure between the carbon fibers of CFE and the carbon fibers of BP, thereby reducing the electrical contact resistance. Area specific resistance (ASR) and gas permeability are measured to evaluate the performance of the PE composite-CFE hybrid bipolar plate. In addition, an acid aging test is performed to measure stack reliability. Finally, a VFRB unit cell charge/discharge test is performed to compare and analyze the performance of the developed PE composite-CFE hybrid BP and the conventional BP.

Development of Composite Bipolar Plate for Vanadium Redox Flow Battery (바나듐 레독스 흐름 전지용 복합재료 분리판 개발)

  • Lim, Jun Woo
    • Composites Research
    • /
    • v.34 no.3
    • /
    • pp.148-154
    • /
    • 2021
  • Carbon/epoxy composite bipolar plate (BP) is a BP that is likely to replace existing graphite bipolar plate of vanadium redox flow cell (VRFB) due to its high mechanical properties and productivity. Multi-functional carbon/epoxy composite BP requires graphite coating or additional surface treatment to reduce interfacial contact resistance (ICR). However, the expanded graphite coating has the disadvantage of having low durability under VRFB operating conditions, and the surface treatments incur additional costs. In this work, an excessive resin absorption method is developed, which uniformly removes the resin rich area on the surface of the BP to expose carbon fibers by applying polyester fabric. This method not only reduces ICR by exposing carbon fibers to BP surfaces, but also forms a unique ditch pattern that can effectively hold carbon felt electrodes in place. The acidic environmental durability, mechanical properties, and gas permeability of the developed carbon/epoxy composite BP are experimentally verified.

Structural analysis in Metal bipolar plate of Fuel Cell Stack (금속분리판 연료전지 스택의 구조 해석)

  • Lee, Sang-Min;Jeon, Ji-Hoon;Lee, Chang-Woo;Suh, Jung-Do;Chang, Hoon;Kim, Sae-Hoon;Lee, Sung-Ho;Hwang, Woon-Bong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.101-104
    • /
    • 2007
  • Mechanical behavior in metal bipolar plate of a fuel cell stack was studied using finite element analysis. The fuel stack is essentially composed of a metal bipolar plate (metal BP), a gasket, an end plate, a membrane electrolyte assembly (MEA), and a gas diffusion layer (GDL). It is important to maintain a suitable fastening force of Metal BP, because it influences the power efficiency of the fuel cell stack. After a gasket and a GDL are placed on the metal BP, the reaction force with the displacement is measured. The channel of metal bipolar plate is replaced by a simple geometrical plate. The results of FEM are similar to those of experiment. Therefore mechanical behavior in metal BP of a fuel cell stack can be estimated by using FEM.

  • PDF

Research for Electrochemical Properties by Surface Treatment of Bipolar Plate in Redox Flow Battery (레독스 플로우 배터리용 Bipolar plate의 표면 처리를 통한 전기화학적 성능 연구)

  • Han, Jae-Jin;Choe, Jin-Seop
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.11a
    • /
    • pp.338-338
    • /
    • 2015
  • VRFB(Vanadium Redox Flow Battery)는 바나듐계 이온을 전해질로 사용하는 레독스 흐름 전지로, 전해질의 양이 전지의 용량을 결정하기 때문에 주로 대용량의 전력이 필요한 플랜트 등에서 주로 사용하는 전지이다. 이 VRFB내에는 Current collector의 부식 방지용으로 두꺼운 Graphite판을 BP(Bipolar plate)로 사용한다. 플랜트에서는 대용량 전지를 필요로 하여 Single stack으로는 사용되기 어렵고, Multi stack으로 주로 사용한다. Multi stack의 경우, 수 백장의 BP가 들어가 전지의 부피가 매우 커지게 되고, 이에 본 연구에서는 BP의 두꺼운 Graphite를 얇은 $TiO_2$ 기판으로 교체하여 성능을 비교하는 연구를 진행하였다. Ti 금속기판을 양극산화법으로 $TiO_2$ 나노튜브 구조를 만든 후, $TiO_2$의 전도도 향상을 목적으로 $IrO_2$를 코팅하였다. 결과적으로 기존의 Graphite에 비해 전기화학적 특성이 향상되었음을 확인하였으며, Cell test를 통해 VRFB의 성능을 평가하였다.

  • PDF

Computational Justification of Current Distribution Measurement Technique Via Segmenting Bipolar Plate in Fuel Cells (분리판 분할을 통만 연료전지의 전류분포 측정법에 대한 수치적 검증)

  • Choi, Yong-Jun;Lee, Gi-Yong;Kang, Kyung-Mun;Kim, Whan-Gi;Ju, Hyun-Chul
    • Journal of Hydrogen and New Energy
    • /
    • v.21 no.1
    • /
    • pp.1-11
    • /
    • 2010
  • Current distribution measurement technique based on a segmented bipolar plate (BP) has been widely adopted to visualize the distribution of current density in a polymer electrolyte membrane. However, a concern is raised how closely the current density of a segmented BP can approach that of a corresponding non-segmented membrane. Therefore, in this paper, the accuracy of the measurement technique is numerically evaluated by applying a three-dimensional, two-phase fuel cell model to a $100\;cm^2$ area fuel cell geometry in which segmented BPs and non-segmented membrane are combined together. The simulation results reveal that the errors between the current densities of the segmented BPs and non-segmented membrane indeed exist, predicting the maximum relative error of 33% near the U-turn regions of the flow-field. The numerical study further illustrates that the erroneous result originates from the BPs segmented non-symmetrically based on the flow channels that allows some currents bypassing flow channels to flow into its neighboring segment. Finally, this paper suggests the optimal way for bipolar plate segmentation that can minimize the deviation of current measured in a segmented BP from that of a corresponding membrane region.

Effect of SUS316L Bipolar Plate Corrosion on Contact Resistance and PEMFC Performance (SUS316L 분리판 부식에 의한 접촉저항 및 고분자전해질 연료전지 성능에 미치는 영향)

  • Kim, Junseob;Kim, Junbom
    • Applied Chemistry for Engineering
    • /
    • v.32 no.6
    • /
    • pp.664-670
    • /
    • 2021
  • Stainless steel was applied as bipolar plate (BP) of polymer electrolyte membrane fuel cell (PEMFC) due to high mechanical strength, electrical conductivity, and good machinability. However, stainless steel was corroded and increased contact resistance resulting PEMFC performance decrease. Although the corrosion resistance could be improved by surface treatment such as noble metal coating, there is a disadvantage of cost increase. The stainless steel corrosion behavior and passive layer influence on PEMFC performance should be studied to improve durability and economics of metal bipolar plate. In this study, SUS316L bipolar plate of 25 cm2 active area was manufactured, and experiments were conducted for corrosion behavior at an anode and cathode. The influence of SUS316L BP corrosion on fuel cell performance was measured using the polarization curve, impedance, and contact resistance. The metal ion concentration in drained water was analyzed during fuel cell operation with SUS316L BP. It was confirmed that the corrosion occurs more severely at the anode than at the cathode for SUS316L BP. The contact resistance was increased due to the passivation of SUS316L during fuel cell operation, and metal ions continuously dissolved even after the passive layer formation.

Finite Element Analysis of Fuel Cell Stack with Orthotropic Material Model (직교이방성 연료전지 스택의 유한요소 해석)

  • 전지훈;황운봉;조규택;김수환;임태원
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.175-178
    • /
    • 2003
  • Mechanical behavior of a fuel stack was studied by the orthotropic material model. The fuel stack is mainly composed of bipolar plate (BP), gasket, end plate, membrane electrolyte assembly (MEA), and gas diffusion layer (GDL). Each component is fastened with a suitable pressure. It is very important to maintain a suitable contact pressure of BP, because it affects the efficiency of the fuel cell. This study compared mechanical behavior of various fastening types of the fuel cell stack. Bar, band, and modified band fastening type are used. The band fastening type showed that it reduces total volume of the cell, but it does not improve the contact pressure distribution of each BP. The modified band fastening type was designed by considering the deformations of band fastening type, and it showed a good enhancement of contact pressure distribution.

  • PDF

Thermal Stress Analysis of a Fuel Cell Stack using an Orthotropic Material Model (복합재료 연료전지 스택의 열응력 해석)

  • Jeon Ji Hoon;Hwang Woonbong;Um Sukkee;Kim Soowhan;Lim Tae Won
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.206-209
    • /
    • 2004
  • Mechanical behavior of a fuel stack was studied using an orthotropic material model. The fuel stack is essentially composed of a bipolar plate (BP), a gasket, an end plate, a membrane electrolyte assembly (MEA), and a gas diffusion layer (GDL). Each component is fastened with a suitable pressure. It is important to maintain a suitable contact pressure distribution of BP, because it influences the power efficiency of the fuel cell stack. When it is exposed to high temperature, its behavior must be stable. Hence, we performed stress analysis at high temperature as well as at room temperature. At high temperature, the contact pressure distribution becomes poor. Many patents have shown that using an elastomer can overcome this phenomena. Its effect was also studied. By using an elastomer, we found a good contact pressure distribution at high temperature as well as at room temperature.

  • PDF

Optimization Method for MEA Performance Considering the Non-Uniformity of Operating Condition in a Large-area Bipolar Plate (대면적 분리판의 운전 환경 불균일성을 고려한 MEA 성능최적화 방법)

  • Kim, Sungmin;Sohn, Young-Jun;Woo, Seunghee;Park, Seok-Hee;Jung, Namgee;Yim, Sung-Dae
    • New & Renewable Energy
    • /
    • v.17 no.2
    • /
    • pp.50-58
    • /
    • 2021
  • We proposed an MEA development methodology that accurately measures intrinsic MEA performance while considering the uneven reaction environments formed inside a large-area BP. To facilitate measurement of the inherent MEA performance, we miniaturized the active area of the MEA to 3 cm2, and prepared two MEAs with different ionomer contents of 0.65 and 0.80 (I/C). By simulating the operating conditions of a 100 cm2 BP at the inlet (I), center (C), and outlet (O), the oxygen concentration and relative humidity were determined to be 20.7, 13.8, 11.7%, and 50, 66.1, and 70.1% respectively. We measured the performance and electrochemical analysis of the prepared MEAs under the three simulated conditions. Based on the results of statistical analysis of the evaluated MEA performance data, I/C 0.65 MEA had a higher average performance and lower performance deviation than I/C 0.80 MEA. Hence, it can be concluded that an I/C 0.65 MEA is a more effective MEA for large-area BP. Based on the above research process, we confirmed the effectiveness of the proposed MEA development methodology.

Review of Carbon Materials Used in Fuel cell Components (연료 전지 구성요소에 사용되는 탄소 재료에 관한 고찰)

  • Jang, Min-Hyeok;Kang, Yu-Jin;Jo, Hyung-Kun;Park, Cho-I;Sim, Hye-Soo;Park, Joo-Il
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.2
    • /
    • pp.193-200
    • /
    • 2021
  • As the degree of environmental pollution caused by the use of fossil fuels intensifies, many countries continue to invest in the development of alternative energy. PEMFC, one of the alternative energies, consists of four main components: bipolor plate, electrolyte, gas diffusion layer, and electrode. Among them, bipolor plate, the gas diffusion layer, and electrode are generally manufactured using carbon materials such as carbon black and carbon fiber. These carbon materials are expensive in manufacturing process or have disadvantages such as corrosion, and research is being conducted in many fields to improve this. This paper collects several research results conducted to improve the shortcomings of these three components and examines the trends of PEMFC by grasping what problems have been and how they have improved.