Browse > Article
http://dx.doi.org/10.15207/JKCS.2021.12.2.193

Review of Carbon Materials Used in Fuel cell Components  

Jang, Min-Hyeok (Department of Chemical & Biological Engineering, Hanbat University)
Kang, Yu-Jin (Department of Chemical & Biological Engineering, Hanbat University)
Jo, Hyung-Kun (Department of Chemical & Biological Engineering, Hanbat University)
Park, Cho-I (Department of Chemical & Biological Engineering, Hanbat University)
Sim, Hye-Soo (Department of Chemical & Biological Engineering, Hanbat University)
Park, Joo-Il (Department of Chemical & Biological Engineering, Hanbat University)
Publication Information
Journal of the Korea Convergence Society / v.12, no.2, 2021 , pp. 193-200 More about this Journal
Abstract
As the degree of environmental pollution caused by the use of fossil fuels intensifies, many countries continue to invest in the development of alternative energy. PEMFC, one of the alternative energies, consists of four main components: bipolor plate, electrolyte, gas diffusion layer, and electrode. Among them, bipolor plate, the gas diffusion layer, and electrode are generally manufactured using carbon materials such as carbon black and carbon fiber. These carbon materials are expensive in manufacturing process or have disadvantages such as corrosion, and research is being conducted in many fields to improve this. This paper collects several research results conducted to improve the shortcomings of these three components and examines the trends of PEMFC by grasping what problems have been and how they have improved.
Keywords
Carbon material; Fuel cell; BP(Bipolar Plate); GL(Gas Diffusion Layer); CL(Catalyst Layer);
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. M. Larijani, M. Yari, A. Afshar, M. Jafarian & M. Eshghabadi. (2011). A comparison of carbon coated and uncoated 316L stainless steel for using as bipolar plates in PEMFCs. Journal of Alloys and Compounds, 509(27), 7400-7404. DOI : 10.1016/j.jallcom.2011.04.044   DOI
2 K. H. Kim, J. W. Lim, M. K. Kim & D. G. Lee. (2013). Development of carbon fabric/graphite hybrid bipolar plate for PEMFC. Composite Structures, 98, 103-110. DOI : 10.1016/j.compstruct.2012.10.043   DOI
3 M. K. Kim, J. W. Lim, K. H. Kim & D. G. Lee. (2013). Bipolar plates made of carbon fabric/phenolic composite reinforced with carbon black for PEMFC. Composite Structures, 96, 569-575. DOI : 10.1016/j.compstruct.2012.09.017   DOI
4 M. K. Kim, J. W. Lim & D. G. Lee. (2015). Surface modification of carbon fiber phenolic bipolar plate for the HT-PEMFC with nano-carbon black and carbon felts. Composite Structures, 119, 630-637. DOI : 10.1016/j.compstruct.2014.09.010   DOI
5 J. W. Lim, M. K. Kim, Y. H. Yu & D. G. Lee. (2014). Development of carbon/PEEK composite bipolar plates with nano-conductive particles for High-Temperature PEM fuel cells (HT-PEMFCs). Composite Structures, 118, 519-527. DOI : 10.1016/j.compstruct.2014.08.011   DOI
6 H. E. Lee, S. H. Han, S. A. Song & S. S. Kim. (2015) Novel fabrication process for carbon fiber composite bipolar plates using sol gel and the double percolation effect for PEMFC. Composite Structures, 134, 44-51. DOI : 10.1016/j.compstruct.2015.08.037   DOI
7 H. E. Lee, Y. S. Chung & S. S. Kim. (2017). Feasibility study on carbon - felt - reinforced thermoplastic composite materials for PEMFC bipolar plates. Composite Structures, 180, 378-385. DOI : 10.1016/j.compstruct.2017.08.037   DOI
8 I. U. Hwang et al. (2008). Bipolar plate made of carbon fiber epoxy composite for polymer electrolyte membrane fuel cells. Journal of Power Sources, 184(1), 90-94. DOI : 10.1016/j.jpowsour.2008.05.088   DOI
9 Y. Show & K. Takahashi. (2009). Stainless steel bipolar plate coated with carbon nanotube (CNT)/polytetrafluoroethylene(PTFE) composite film for proton exchange membrane fuel cell (PEMFC). Journal of Power Sources, 190(2), 322-325. DOI : 10.1016/j.jpowsour.2009.01.027   DOI
10 J. I. Lee. (2007). Review of Activated Carbon. Junrado : Jeollanam-do Institute of Health and Enviroment
11 I. Mochida, I. Ito, Y. Korai, H. Fujitsu & K. Takeshita. (1981). Catalytic graphitization of fibrous and particulate carbons. Carbon, 19(6), 457-465. DOI : 10.1016/0008-6223(81)90029-4   DOI
12 O. Delikaya, N. Bevilacqua, L. Eifert, U.Kunz, R. Zeis & C. Roth. (2020). Porous electrospun carbon nanofibers network as an integrated electrode@gas diffusion layer for high temperature polymer electrolyte membrane fuel cells. Electrochimica Acta, 345, 136192. DOI : 10.1016/j.electacta.2020.136192   DOI
13 Z. Zhang, P. He, Y. J. Dai, P. H. Jin & W. Q. Tao. (2020). Study of the mechanical behavior of paper-type GDL in PEMFC based on microstructure morphology. International Journal of Hydrogen Energy, 45(53), 29379-29394. DOI : 10.1016/j.ijhydene.2020.07.240   DOI
14 K. Y. Chung & S. Kim. (2012). Optimization of Fuel Processing Unit of Fuel Cell System using Six-sigma Technique. Journal of Digital Convergence, 10(2), 225-229. DOI : 10.14400/JDPM.2012.10.2..225   DOI
15 J. Bayer, & S. Ergun. (1967). An X-ray Study of carbon blacks produced from coals. Carbon, 5(2), 107-111. DOI : 10.1016/0008-6223(67)90064-4   DOI
16 A. L. Dicks. (2006). The role of carbon in fuel cells. Journal of Power Sources, 156(2), 128-141. DOI : 10.1016/j.jpowsour.2006.02.054   DOI
17 Carbot corporation. https://www.cabotcorp.com/solutions/products-plus/specialty-carbon-blacks.
18 Lion Specialty Chemicals. Co., LTD. https://www.lion-specialty-chem.co.jp/en/product/carbon/carbon01.htm
19 Denka Korea Co., Ltd. http://www.denka.co.kr/?page_id=725
20 Tokai Carbon Co., LTD. https://www.tokaicarbon.co.jp/en/products/carbon_b/
21 ASAHI CARBON Co., LTD. https://www.asahicarbon.co.jp/global_site/product/technology/index.html
22 H. Wu, D. Wexler & H. Liu. (2012). Pt-Ni/C catalysts using different carbon supports for the cathode of the proton exchange membrane fuel cell (PEMFC). Materials Chemistry and Physics, 136(2-3), 845-849. DOI :10.1016/j.matchemphys.2012.08.007   DOI
23 D. Y. Lee, J. W. Lim, S. H. Nam, I. B. Choi & D. G. Lee. (2015). Gasket - integrated carbon/ silicone elastomer composite bipolar plate for high-temperature PEMFC. Composite Structures, 128, 284-290. DOI : 10.1016/j.compstruct.2015.03.063   DOI
24 D. Y. Lee & D. G. Lee. (2016). Carbon composite bipolar plate for high-temperature proton exchange membrane fuel cells (HT-PEMFCs). Journal of Power Sources, 327, 119-126. DOI : 10.1016/j.jpowsour.2016.07.045   DOI
25 E. P. Ambrosio, C. Francia, M. Manzoli, N. Penazzi & P. Spinelli. (2008). Platinum catalyst supported on mesoporous carbon for PEMFC. International Journal of Hydrogen Energy, 33(12), 3142-1345. DOI : 10.1016/j.ijhydene.2008.03.045   DOI
26 R. Rego, M. C. Oliveira, F. Alcaide & G. Alvarez. (2012). Development of a carbon paper-supported Pd catalyst for PEMFC application. Internatinoal Journal of Hydrogen Energy, 37(8), 7192-7199. DOI : 10.1016/j.ijhydene.2011.12.074   DOI
27 Y. S. Yun, D. Y. Kim, H. H. Park, Y. S. Tak & H. J. Jin. (2012). 3D hierarchical porous carbons containing numerous nitrogen atoms as catalyst supports for PEMFCs. Synthetic Metals, 162(24), 2337-2341. DOI : 10.1016/j.synthmet.2012.11.005   DOI
28 C. H. Hung, C. H. Chiu, S. P. Wang, I. L. Chiang & H. Yang. (2012) Ultra thin gas diffusion layer development for PEMFC. International Journal of Hydrogen Energy, 37(17), 12805-12812. DOI : doi.org/10.1016/j.ijhydene.2012.05.110   DOI
29 J. Chen, T. Matsuura & M. Hori. (2004). Novel gas diffusion layer with water management function for PEMFC. Journal of Power Sources, 131(1-2), 155-161. DOI : 10.1016/j.jpowsour.2004.01.007   DOI
30 C. J. Tseng & S. K. Lo. (2010). Effects of microstructure characteristics of gas diffusion layer and microporous layer on the performance of PEMFC. Energy Conversion and Management, 51(4), 677-684. DOI : 10.1016/j.enconman.2009.11.011   DOI
31 J. Lee, J. Hinebaugh & A. Bazylak. (2013). Synchrotron X-ray radiographic investigations of liquid water transport behavior in a PEMFC with MPL-coated GDLs. Journal of Power Sources, 227, 123-130. DOI : 10.1016/j.jpowsour.2012.11.006   DOI
32 T. Chen, S. Liu, J. Zhang & M. Tang. (2019). Study on the characteristics of GDL with different PTFE content and its effect on the performance of PEMFC. International Journal of Heat and Mass Transfer, 128, 1168-1174. DOI : 10.1016/j.ijheatmasstransfer.2018.09.0 97   DOI
33 X. Zhang, Y. Yang, X. Zhang & H. Liu. (2020). Identification of performance degradations in catalyst layer and gas diffusion layer in proton exchange membrane fuel cells. Journal of Power Sources, 449, 227580. DOI : 10.1016/j.jpowsour.2019.227580   DOI
34 G. G. Park et al. (2006). Adoption of nano-materials for the micro-layer in gas diffusion layers of PEMFCs. Journal of Power Souerces, 163(1), 113-118. DOI : 10.1016/j.jpowsour.2005.11.103   DOI
35 K. S. Eom et al. (2013). Optimization of GDLs for high-performance PEMFC employing stainless steel bipolar plates. International Journal of Hydrogen Energy, 38(14), 6249-6260. DOI : 10.1016/j.ijhydene.2012.12.061   DOI
36 S. Hou et al. (2020). Enhanced low-humidity performance in a proton exchange membrane fuel cell by developing a novel hydrophilic gas diffusion layer. International Journal of Hydrogen Energy, 45(1), 937-944.DOI : 10.1016/j.ijhydene.2019.10.160   DOI
37 D. H. Jeon. (2020). Effect of gas diffusion layer thickness on liquid water transport characteristics in polymer electrolyte membrane fuel cells. Journal of power Sources, 475, 228578. DOI : 10.1016/j.jpowsour.2020.228578   DOI
38 G. H. Kim, D. S. Kim, J. Y. Kim, H. Kim & T. H. Park. (2020). Impact of cracked gas diffusion layer on performance of polymer electrolyte membrane fuel cells. Journal of Industrial and Engineering Chemistry, 91, 311-316. DOI : 10.1016/j.jiec.2020.08.014   DOI
39 S. Shahgaldi & J. Hamelin. (2015). Improved carbon nanostructures as a novel catalyst support in the cathode side of PEMFC: a critical review. Carbon, 94, 705-728. DOI : 10.1016/j.carbon.2015.07.055   DOI
40 M. Kwiatkowski & E. Broniek. (2017). An analysis of the porous structure of activated carbons obtained from hazelnut shells by various physical and chemical methods of activation. Clloids and Surfaces A: Physicochemical and Engineering Aspects, 529, 443-453. DOI : 10.1016/j.colsurfa.2017.06.028   DOI
41 S. Ijima. (1991). Helical microtubules of graphitic carbon. Nature, 354, 56-58. DOI : 10.1038/354056a0   DOI
42 CNT Materials & Properties. (2019). Seoul : Korea University Nanoelectronics Laboratory.
43 K. B. Kim, J P. Lee, M. J. Kim & Y. S. Min. (2019). Characteristics of Excimer Laser-Annealed Polycrystalline Silicon on Polymer layers. Journal of Convergence for Information Technology, 9(3), 75-81. DOI : 10.22156.CS4SMB.2019.9.3.075   DOI
44 M. K. Seo & S. J. Park. (2010). Manufactruing Method of Carbon Fibers and Their Application Fields. Polymer Science and Technology, 21(2), 130-140.
45 J. WANG, J. SUN, R. TIAN & J. XU. (2006). Plain carbon steel bipolar plates for PEMFC. Rare Metals, 25(6), 235-239. DOI : 10.1016/S1001-0521(07)60080-1   DOI
46 R. Dweiri & J. Sahari. (2007) Electrical properties of carbon-based polypropylene composites for bipolar plates in polymer electrolyte membrane fuel cell (PEMFC). Journal of Power Sources, 171(2), 424-432. DOI :10.1016/j.jpowsour.2007.05.106   DOI
47 F. Yuan, H. K. Yu & H. J. Ryua. (2004) Preparation and characterization of carbon nanofibers as catalyst support material for PEMFC. Electrochimica Acta, 50(2-3), 685-691. DOI : 10.1016/j.electacta.2004.01.106   DOI
48 U. K. Chanda, A. Behera, S. Roy & S. Pati. (2018). Evaluation of Ni-Cr-P coatings electrodeposited on low carbon steel bipolar plates for polymer electrolyte membrane fuel cell. International Journal of Hydrogen Energy, 43(52), 23430-23440. DOI : 10.1016/j.ijhydene.2018.10.218   DOI
49 O. A. Alo, I. O. Otunniyi, H. Pienaar & E. R. Sadiku. (2020). Electrical and mechanical properties of polypropylene/epoxy blend-graphite/carbon black composite for proton exchange membrane fuel cell bipolar plate. materialstoday : PROCEEDINGS. DOI : 10.1016/j.matpr.2020.03.642   DOI
50 S. Witpathomwong, M. Okhawilai, C. Jubsilp, P. Karagiannidis & S. Rimdusit. (2020). Highly filled graphite/graphene/carbon nanotube in polybenzoxazine composites for bipolar plate in PEMFC. International Journal of Hydrogen Energy, 45(55), 30898-30910. DOI : 10.1016/j.ijhydene.2020.08.006   DOI
51 R. A. MoghadamEsfahani, S. K. Vankova, E. B. Easton, I. I. Ebralidze & S. Specchia. (2020). A hybrid Pt/NbO/CNTs catalyst with high activity and durability for oxygen reduction reaction in PEMFC. Renewable Energy, 154, 913-924. DOI : 10.1016/j.renene.2020.03.029   DOI
52 T. Suzuki, S. Tsushima & S. Hirai. (2013). Fabrication and performance evaluation of structurally-controlled PEMFC catalyst layers by blending platinum-supported and stand-alone carbon black. Journal of Power Sources, 233, 269-276. DOI : 10.1016/j.jpowsour.2013.01.092   DOI
53 Y. Wang, J. Jin, S. Yang, G. Li & J. Qiao. (2015). Highly active and stable platinum catalyst supported on porous carbon nanofibers for improved performance of PEMFC. Electrochimica Acta, 177, 181-189. DOI : 10.1016/j.electacta.2015.01.134   DOI
54 S. Shahgaldi & J. Hamelin. (2015). Improved carbon nanostructures as a novel catalyst support in the cathode side of PEMFC: a critical review. Carbon, 94, 705-728. DOI : 10.1016/j.carbon.2015.07.055   DOI
55 A. Marinoiu et al. (2015). Graphene-based Materials Used as the Catalyst Support for PEMFC Applications. materialstoday : PROCEEDINGS, 2(6), 3797-3805. DOI : 10.1016/j.matpr.2015.08.013   DOI
56 F. Labbe et al. (2018). Tin dioxide coated carbon materials as an alternative catalyst support for PEMFCs: Impacts of the intrinsic carbon properties and the synthesis parameters on the coating characteristics, Microporous and Mesoporous Materials, 271, 1-15. DOI : 10.1016/j.micromeso.2018.05.019   DOI
57 P. A. Chuang, M. A. Rahman, F. Mojica, D. S. Hussey, D. L. Jacobson & J. M. LaManna. (2020). The interactive effect of heat and mass transport on water condensation in the gas diffusion layer of a proton exchange membrane fuel cell. Journal of Power Sources, 480, 229121. DOI : 10.1016/j.jpowsour.2020.229121   DOI
58 S. K. Heo. (2019). How to activate the hydrogen energy industry. Sejong : KIET
59 Phillips Carbon Black Limited. https://www.pcblltd.com/specialty-black/
60 Himadri. https://www.himadri.com/products
61 H. Chang & P. Thapa. (2016). A Study of Monitoring and Operation for PEM Water Electrolysis and PEM Fuel Cell Through the Convergence of IoT in Smart Energy Campus Microgrid. Journal of the Korea Convergence Society, 7(6), 13-21. DOI : 10.15207/JKCS.2016.7.6..013   DOI
62 C. S. Oh. [2004]. Carbon material for electrode catalyst of polymer electrolyte fuel cell. Seoul : RESEAT
63 H. J. kim, H. N. Lim, H. M. Oh, J. E. Ahn, H. S. Chei & H. N. Lee. (2011). Application of Fuel cell Catalysts and Low Pollution of Surface Treatment by Conductive Carbon Powder. Applied Chemistry, 15(2), 141-144.
64 Orion ENGINEERED CARBONS. https://www.orioncarbons.com/specialty_carbon_blacks