• Title/Summary/Keyword: BMSCs.

Search Result 51, Processing Time 0.031 seconds

Osteogenic Differentiation of Bone Marrow Stem Cells Using Thermo-Sensitive Hydrogels (온도감응성 수화젤을 이용한 골수간엽줄기세포의 골분화 유도)

  • Kim, Sun-Kyung;Hyun, Hoon;Kim, Soon-Hee;Yoon, Sun-Jung;Kim, Moon-Suk;Rhee, John-M.;Khang, Gil-Son;Lee, Hai-Bang
    • Polymer(Korea)
    • /
    • v.30 no.3
    • /
    • pp.196-201
    • /
    • 2006
  • Poly (ethylene glycol)-based diblock and triblock thermo- sensitive polyester copolymers were investigated for application on tissue engineering and injectable biomaterials in drug delivery system due to their nontoxicity, biocompatibility and biodegradability. We synthesized the diblock copolymers consisting of methoxy poly (ethylene glycol) (MPEG) (Mn=750 g/mole) and poly $(\varepsilon-caprolactone)$ (PCL) by ring opening polymerization of $\varepsilon-CL$ with MPEG as an initiator in the presence of HCl $Et_2O$. The effect of diblock copolymers on in vivo osteogenic differentiation of rat bone marrow stromal cells (BMSCS) with and without the presence of osteogenic supplements (dexamethasone) was investigated. Thin sections were cut from paraffin embedded tissues and histological sections were stained by H&E, von Kossa, and immunohistochemical staining for osteocalcin. In conclusion, dexamethasone containing thermo- sensitive hydrogel might be improved osteogenic differentiation of BMSCs. We expect the osteoinduction effect to be excellent when it uses stem cell or other osteogenic materials.

Induction of Angiogenesis by Matrigel Coating of VEGF-Loaded PEG/PCL-Based Hydrogel Scaffolds for hBMSC Transplantation

  • Jung, Yeon Joo;Kim, Kyung-Chul;Heo, Jun-Young;Jing, Kaipeng;Lee, Kyung Eun;Hwang, Jun Seok;Lim, Kyu;Jo, Deog-Yeon;Ahn, Jae Pyoung;Kim, Jin-Man;Huh, Kang Moo;Park, Jong-Il
    • Molecules and Cells
    • /
    • v.38 no.7
    • /
    • pp.663-668
    • /
    • 2015
  • hBMSCs are multipotent cells that are useful for tissue regeneration to treat degenerative diseases and others for their differentiation ability into chondrocytes, osteoblasts, adipocytes, hepatocytes and neuronal cells. In this study, biodegradable elastic hydrogels consisting of hydrophilic poly(ethylene glycol) (PEG) and hydrophobic poly(${\varepsilon}$-caprolactone) (PCL) scaffolds were evaluated for tissue engineering because of its biocompatibility and the ability to control the release of bioactive peptides. The primary cultured cells from human bone marrow are confirmed as hBMSC by immunohistochemical analysis. Mesenchymal stem cell markers (collagen type I, fibronectin, CD54, $integrin1{\beta}$, and Hu protein) were shown to be positive, while hematopoietic stem cell markers (CD14 and CD45) were shown to be negative. Three different hydrogel scaffolds with different block compositions (PEG:PCL=6:14 and 14:6 by weight) were fabricated using the salt leaching method. The hBMSCs were expanded, seeded on the scaffolds, and cultured up to 8 days under static conditions in Iscove's Modified Dulbecco's Media (IMDM). The growth of MSCs cultured on the hydrogel with PEG/PCL= 6/14 was faster than that of the others. In addition, the morphology of MSCs seemed to be normal and no cytotoxicity was found. The coating of the vascular endothelial growth factor (VEGF) containing scaffold with Matrigel slowed down the release of VEGF in vitro and promoted the angiogenesis when transplanted into BALB/c nude mice. These results suggest that hBMSCs can be supported by a biode gradable hydrogel scaffold for effective cell growth, and enhance the angiogenesis by Matrigel coating.

Osteogenic effects of polyethyleneimine-condensed BMP-2 genes in vitro and in vivo (Polyethyleneimine-응축 BMP-2 발현 유전자를 이용한 골형성 효과)

  • Cheong, Hee-Sun;Kim, Kyoung-Hwa;Park, Yoon-Jeong;Kim, Tae-Il;Lee, Yong-Moo;Ku, Young;Rhyu, In-Chul;Lee, Dong-Soo;Lee, Seung-Jin;Chung, Chong-Pyoung;Han, Soo-Boo;Seol, Yang-Jo
    • Journal of Periodontal and Implant Science
    • /
    • v.37 no.4
    • /
    • pp.859-869
    • /
    • 2007
  • Naked DNA and standard vectors have been previously used for gene delivery. Among these, PEI can efficiently condense DNA and has high intrinsic endosomal activities. The aim of this study is to investigate whether the cationic polycation PEI could increase the transfection efficiency of BMP expressing DNA using a vector-loaded collagen sponge model. BMP-2/pcDNA3.1 plasmid was constructed by subcloning human BMP-2 cDNA into the pcDNA3.1 plasmid vector. PEI/DNA complexes were prepared by mixing PEI and BMP-2/pcDNA3.1 and the constructed complexes were loaded into the collagen sponges. In vitro studies, BMSCs were transfected with the PEI/BMP-2/pcDNA3.1 complexes from collgen sponge. The level of secreted BMP-2 and alkaline phosphatase activities of transfected BMSCs were significantly higher in PEI/BMP-2/pcDNA3.1 group than in BMP-2/pcDNA3.1 group (p<0.05). Transfected BMSCs were cultured and mineralization was observed only in cells treated with PEI/BMP-2/pcDNA3.1 complexes. In vivo studies, PEI/BMP-2/pcDNA3.1/collagen, BMP-2/pcDNA3.1/collagen and blank collagen were grafted in skeletal muscle of nude mice. Ectopic bone formation was shown in PEI/BMP-2/pcDNA3.1/collagen grafted mouse 4 weeks postimplantation, while not in BMP-2/pcDNA3.1 grafted tissue. This study suggests that PEI-condensed DNA encoding for BMP-2 is capable of inducing bone formation in ectopic site and might increase the transfection rate of BMP-2/pcDNA3.1. As a non-viral vector, PEI offers the potential in gene therapy for bone engineering.

Osteogenic Differentiation of Bone Marrow Stem Cell using Bi-phase Alginate Scaffold Including BMP-2 (BMP-2를 함유한 2상 알지네이트 담체를 이용한 골수줄기세포의 골분화)

  • Lim, Hyun-Ju;Kim, Hak-Tae;Oh, Eun-Jung;Kim, Tae-Jung;Ghim, Han-Do;Choi, Jin-Hyun;Chung, Ho-Yun
    • Archives of Plastic Surgery
    • /
    • v.37 no.3
    • /
    • pp.207-212
    • /
    • 2010
  • Purpose: The object of this study is to develop a novel BMP-2 delivery system for continuous osteogenic differentiation and to induce osteogenesis of stem cells using a bi-phase alginate carrier in vitro. Methods: Alginate nanoparticle loaded BMP-2 was prepared by the reverse emulsification-diffusion technique. Physical properties and release profiles of alginate carriers were measured by Instron and ELISA kit, respectively. Cell viability and alkaline phosphate activity of hBMSCs differentiation was also evaluated by MTS and Metra BAP assays, respectively. Results: Optimal concentration for bi-phase alginate carrier was determined as 2 wt% by evaluating mechanical and biological properties, and differentiation of BMSCs for bone regeneration. The 2% bi-phase alginate carrier had the lowest initial and final release ratio. In addition, the 2% bi-phase alginate carrier had a little higher ALP activity than the homogeneous carrier. An improved controlled release profile was obtained by combining alginate hydrogel with lyophilized particles. Conclusion: Bi-phase alginate carrier has many advantages such as biocompatibility and controlled release capability. It is expected to be effective as a scaffold and carrier in bone tissue engineering.

A STUDY ON THE OSTEOGENIC DIFFERENTIATION OF ADIPOSE-DERIVED ADULT STEM CELL (지방조직 유래 줄기세포의 조골세포로의 분화에 대한 실험적 연구)

  • Lee, Eui-Seok;Jang, Hyon-Seok;Kwon, Jong-Jin;Rim, Jae-Suk
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.30 no.2
    • /
    • pp.133-141
    • /
    • 2008
  • Stem cells have self-renewal capacity, long-term viability, and multiline age potential. Adult bone marrow contains mesenchymal stem cells. Bone marrow-derived mesenchymal stem cells (BMSCs) are progenitors of skeletal tissue components and can differentiate into adipocytes, chondrocytes, osteoblasts, and myoblasts in vitro and undergo differentiation in vivo. However, the clinical use of BMSCs has presented problems, including pain, morbidity, and low cell number upon harvest. Recent studies have identified a putative stem cell population within the adipose tissue. Human adipose tissue contains pluripotent stem cells simillar to bone marrow-derived stem cells that can differentiate toward the osteogenic, adipogenic, myogenic, and chondrogenic lineages. Human adipose tissue-derived stem cells (ATSCs) could be proposed as an alternative source of adult bone marrow stem cells, and could be obtained in large quantities, under local anesthesia, with minimal discomfort. Human adipose tissue obtained by liposuction was processed to obtain ATSCs. In this study, we compared the osteogenic differentiation of ATSCs in a specific osteogenic induction medium with that in a non-osteogenic medium. ATSCs were incubated in an osteogenic medium for 28 days to induce osteogenesis respectively. Osteogenic differentiation was assessed by von Kossa and alkaline phosphatase staining. Expression of osteocyte specific bone sialoprotein, osteocalcin, collagen type I and alkaline phosphatase, bone morphogenic protein 2, bone morphogenic protein 6 was confirmed by RT-PCR. ATSCs incubated in the osteogenic medium were stained positively for von Kossa and alkaline phosphatase staining. Expression of osteocyte specific genes was also detected. Since this cell population can be easily identified through fluorescence microscopy, it may be an ideal source of ATSCs for further experiments on stem cell biology and tissue engineering. The present results show that ADSCs have an ability to differentiate into osteoblasts. In the present study, we extend this approach to characterize adipose tissue-derived stem cells.

Biological Evaluation of Bone Marrow-Derived Stem Cells onto Different Wettability by RT-PCR (역전사 중합효소 연쇄반응을 이용한 표면 적심성에 따른 골수유래 줄기세포의 생물학적 평가)

  • 김은정;박종수;김문석;조선행;이종문;이해방;강길선
    • Polymer(Korea)
    • /
    • v.28 no.3
    • /
    • pp.218-224
    • /
    • 2004
  • The adhesion and proliferation of mammalian cells on polymeric biomaterials depend on the surface characteristics such as wettability, chemistry, charge and roughness. In order to recognize the correlation between the adhesion and proliferation of human bone marrow derived stem cells (BMSCs) and surface property, radio frequency generated plasma treatment on low density polyethylene (LDPE) has been carried out. The modified LDPE surfaces were characterized by measuring the static water contact angle. The adhesion and proliferation of cells on LDPE films were characterized by cell counting and reverse transcription-polymerase chain reaction (RT-PCR). The water contact angle of the film surface decreased with plasma treatment time. Proto-oncogenes (c-myc, c-fos) and tumor suppressor gene (p153) showed maximum expression with contact angle of 60 ∼ 70$^{\circ}$ range of LDPE film. By cell counting, we confirmed that the rate of cell proliferation appeared the higher on the film surface of the contact angle of 60∼70$^{\circ}$ We concluded that the surface wettability is an important role for the growth and differentiation of BMSCs.

Sphingosine-1-Phosphate-Induced Migration and Differentiation of Human Mesenchymal Stem Cells to Smooth Muscle Cells (Sphingosine-1-phosphate에 의한 중간엽 줄기세포의 이동과 평활근세포로의 분화)

  • Song, Hae-Young;Shin, Sang-Hun;Kim, Min-Young;Kim, Jae-Ho
    • Journal of Life Science
    • /
    • v.21 no.2
    • /
    • pp.183-193
    • /
    • 2011
  • Migration and differentiation of mesenchymal stem cells are crucial for tissue regeneration in response to injury. Sphingosine-1-phosphate (S1P) is a bioactive lipid that regulates a variety of biological processes, including proliferation, survival, differentiation and motility. In the present study, we determined the role of S1P in migration and differentiation of human bone marrow-derived mesenchymal stem cells (BMSCs). S1P stimulated migration of BMSCs in a dose- and time-dependent manner, and pre-incubation of the cells with pertussis toxin completely abrogated S1P-induced migration, suggesting involvement of Gi-coupled receptors in S1P-induced cell migration. S1P elicited elevation of intracellular concentration of $Ca^{2+}$ ($[Ca^{2+}]_i$) and pretreatment with VPC23019, an antagonist of $S1P_1/S1P_3$, blocked S1P-induced migration and increase of $[Ca^{2+}]_i$. Small interfering RNA-mediated knockdown of endogenous $S1P_1$ attenuated S1P-induced migration of BMSCs. Furthermore, S1P treatment induced expression of $\alpha$-smooth muscle actin ($\alpha$-SMA), a smooth muscle marker, and pretreatment with VPC23019 abrogated S1P-induced $\alpha$-SMA expression. S1P induced phosphorylation of p38 mitogen-activated protein kinase (MAPK), and pretreatment of cells with SB202190, an inhibitor of p38 MAPK, or adenoviral overexpression of a dominant-negative mutant of the p38 MAPK blocked S1P-induced cell migration and $\alpha$-SMA expression. Taken together, these results suggest that S1P stimulates migration and smooth muscle differentiation of BMSCs through an $S1P_1$-p38 MAPK-dependent mechanism.

Curcumin Inhibits Osteoclastogenesis by Decreasing Receptor Activator of Nuclear Factor-κB Ligand (RANKL) in Bone Marrow Stromal Cells

  • Oh, Sora;Kyung, Tae-Wook;Choi, Hye-Seon
    • Molecules and Cells
    • /
    • v.26 no.5
    • /
    • pp.486-489
    • /
    • 2008
  • Curcumin (diferuloylmethane), a pigment derived from turmeric, has anti-oxidant and anti-inflammatory activities. Accumulating evidence points to a biochemical link between increased oxidative stress and reduced bone density. Osteoclast formation was evaluated in co-cultures of bone marrow stromal cells (BMSC) and whole bone marrow cells (BMC). Expression of receptor activator of nuclear factor-${\kappa}B$ ligand (RANKL) was analyzed at the mRNA and protein levels. Exposure to curcumin led to dose-dependent suppression of osteoclastogenesis in the co-culture system, and to reduced expression of RANKL in $IL-1{\alpha}$-stimulated BMSCs. Addition of RANKL abolished the inhibition of osteoclastogenesis by curcumin, whereas the addition of prostaglandin $E_2$ ($PGE_2$) did not. The decreased osteoclastogenesis induced by curcumin may reduce bone loss and be of potential benefit in preventing and/or attenuating osteoporosis.

Prmt7 is required for the osteogenic differentiation of mesenchymal stem cells via modulation of BMP signaling

  • Tuan Anh Vuong;Yan Zhang;June Kim;Young-Eun Leem;Jong-Sun Kang
    • BMB Reports
    • /
    • v.57 no.7
    • /
    • pp.330-335
    • /
    • 2024
  • Arginine methylation, which is catalyzed by protein arginine methyltransferases (Prmts), is known to play a key role in various biological processes. However, the function of Prmts in osteogenic differentiation of mesenchymal stem cells (MSCs) has not been clearly understood. In the current study, we attempted to elucidate a positive role of Prmt7 in osteogenic differentiation. Prmt7-depleted C3H/10T1/2 cells or bone marrow mesenchymal stem cells (BMSCs) showed the attenuated expression of osteogenic specific genes and Alizarin red staining compared to the wild-type cells. Furthermore, we found that Prmt7 deficiency reduced the activation of bone morphogenetic protein (BMP) signaling cascade, which is essential for the regulation of cell fate commitment and osteogenesis. Taken together, our data indicate that Prmt7 plays important regulatory roles in osteogenic differentiation.

Role of a Burr Hole and Calvarial Bone Marrow-Derived Stem Cells in the Ischemic Rat Brain : A Possible Mechanism for the Efficacy of Multiple Burr Hole Surgery in Moyamoya Disease

  • Nam, Taek-kyun;Park, Seung-won;Park, Yong-sook;Kwon, Jeong-taik;Min, Byung-kook;Hwang, Sung-nam
    • Journal of Korean Neurosurgical Society
    • /
    • v.58 no.3
    • /
    • pp.167-174
    • /
    • 2015
  • Objective : This study investigates the role of a burr hole and calvarial bone marrow-derived stem cells (BMSCs) in a transient ischemic brain injury model in the rat and postulates a possible mechanism for the efficacy of multiple cranial burr hole (MCBH) surgery in moyamoya disease (MMD). Methods : Twenty Sprague-Dawley rats (250 g, male) were divided into four groups : normal control group (n=5), burr hole group (n=5), ischemia group (n=5), and ischemia+burr hole group (n=5). Focal ischemia was induced by the transient middle cerebral artery occlusion (MCAO). At one week after the ischemic injury, a 2 mm-sized cranial burr hole with small cortical incision was made on the ipsilateral (left) parietal area. Bromodeoxyuridine (BrdU, 50 mg/kg) was injected intraperitoneally, 2 times a day for 6 days after the burr hole trephination. At one week after the burr hole trephination, brains were harvested. Immunohistochemical stainings for BrdU, CD34, VEGF, and Doublecortin and Nestin were done. Results : In the ischemia+burr hole group, BrdU (+), CD34 (+), and Doublecortin (+) cells were found in the cortical incision site below the burr hole. A number of cells with Nestin (+) or VEGF (+) were found in the cerebral parenchyma around the cortical incision site. In the other groups, BrdU (+), CD34 (+), Doublecortin (+), and Nestin (+) cells were not detected in the corresponding area. These findings suggest that BrdU (+) and CD34 (+) cells are bone marrow-derived stem cells, which may be derived from the calvarial bone marrow through the burr hole. The existence of CD34 (+) and VEGF (+) cells indicates increased angiogenesis, while the existence of Doublecortin (+), Nestin (+) cells indicates increased neurogenesis. Conclusion : Based on these findings, the BMSCs through burr holes seem to play an important role for the therapeutic effect of the MCBH surgery in MMD.