• Title/Summary/Keyword: BMP (biochemical methane potential)

Search Result 56, Processing Time 0.028 seconds

Effect of Rice Straw on Methane Production Potential of Cow Manure (우분과 볏짚의 병합 혐기성 소화를 통한 메탄 생산에 대한 고찰)

  • Park, So Yun;Jang, Jeong A;Zhao, Xin;Hong, Jin-Kyung;Jho, Eun Hea
    • Korean Journal of Environmental Agriculture
    • /
    • v.41 no.2
    • /
    • pp.71-81
    • /
    • 2022
  • BACKGROUND: Animal manures are one of the biggest sources of greenhouse gases and improper manage-ment of animal wastes contributes to the increasing greenhouse gases in the atmosphere. Con-verting greenhouse gases generated from animal manures to energy is one way of contributing to the net-zero carbon emissions. METHODS AND RESULTS: The potential for methane production from cow manure (CM) was studied by measuring the methane yield using the biochemical methane potential (BMP) test. In particular, the effect of co-digestion using rice straw (RM) on the methane production was studied. The methane yields from the co-digestion of CM and RS were statistically similar to that from the mono-digestion of CM or RS. But there was a synergy effect at the CM:RS ratio of 1:2 and 1:1. This can be attributed to the increased C/N ratio. The changed microbial community structure with the addition of substrates (CM, RS) probably led to the increase in the methane produc-tion. CONCLUSION(S): The methane production potential of the particular CM used in this study was not improved by the addition of RS as a co-substrate. The addition of substrates to the anaerobic sludge promoted the increase in the microbial species having synergetic relationship with methano-gens, and this can partially explain the increase in the methane production with the addition of substrates. Overall, there are needs for further studies to improve the methane yield from CM.

Assessment of Methane Production Rate Based on Factors of Contaminated Sediments (오염퇴적물의 주요 영향인자에 따른 메탄발생 생성률 평가)

  • Dong Hyun Kim;Hyung Jun Park;Young Jun Bang;Seung Oh Lee
    • Journal of Korean Society of Disaster and Security
    • /
    • v.16 no.4
    • /
    • pp.45-59
    • /
    • 2023
  • The global focus on mitigating climate change has traditionally centered on carbon dioxide, but recent attention has shifted towards methane as a crucial factor in climate change adaptation. Natural settings, particularly aquatic environments such as wetlands, reservoirs, and lakes, play a significant role as sources of greenhouse gases. The accumulation of organic contaminants on the lake and reservoir beds can lead to the microbial decomposition of sedimentary material, generating greenhouse gases, notably methane, under anaerobic conditions. The escalation of methane emissions in freshwater is attributed to the growing impact of non-point sources, alterations in water bodies for diverse purposes, and the introduction of structures such as river crossings that disrupt natural flow patterns. Furthermore, the effects of climate change, including rising water temperatures and ensuing hydrological and water quality challenges, contribute to an acceleration in methane emissions into the atmosphere. Methane emissions occur through various pathways, with ebullition fluxes-where methane bubbles are formed and released from bed sediments-recognized as a major mechanism. This study employs Biochemical Methane Potential (BMP) tests to analyze and quantify the factors influencing methane gas emissions. Methane production rates are measured under diverse conditions, including temperature, substrate type (glucose), shear velocity, and sediment properties. Additionally, numerical simulations are conducted to analyze the relationship between fluid shear stress on the sand bed and methane ebullition rates. The findings reveal that biochemical factors significantly influence methane production, whereas shear velocity primarily affects methane ebullition. Sediment properties are identified as influential factors impacting both methane production and ebullition. Overall, this study establishes empirical relationships between bubble dynamics, the Weber number, and methane emissions, presenting a formula to estimate methane ebullition flux. Future research, incorporating specific conditions such as water depth, effective shear stress beneath the sediment's tensile strength, and organic matter, is expected to contribute to the development of biogeochemical and hydro-environmental impact assessment methods suitable for in-situ applications.

Effect of Phase Separation on Anaerobic Degradation of Phenol (페놀의 혐기성분해에 대한 상분리의 영향)

  • Park, Ju-Seok;Shin, Hang-Sik;Bae, Byung-Uk
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.8 no.1
    • /
    • pp.27-33
    • /
    • 1994
  • With the rapid industrialization, an ever-increasing quantity and kind of new organic compounds pose environmental problems due to their toxicity and physiological effect. However, research on the biodegradation of these compounds under anaerobic condition is very limited inspite of its efficiency and economical advantage. In this research, the pH effect on the ring cleavage of phenol under anaerobic condition was investigated, and the theory of phase separation was applied to the degradation of phenol for investigating the role of acidogenic bacteria. Results, obtained from biochemical methane potential(BMP) assay for 15.5 days of incubation, showed that acidic condition was more desirable for phenol degradation than alkaline condition. By both unacclimated methanogenic granular sludge and two mixed cultures, phenol was completely removed within six weeks of incubation with a gas conversion rate of over 86% of theoretical one. However, phenol was not degraded by unacclimated acidogenic culture, and thus it is considered as a syntrophic substrate. In case of phase separated biochemical methane potential(PSBMP) assay, in which acidogenic and methanogenic culture were seeded separately and consecutively, those that had been subjected to normal acidogens for 3 to 4 weeks showed higher gas production than those seeded with sterile or frozen culture.

  • PDF

Operation of UASB Reactor for Treatment of Dairy Wastewaters (유가공폐수 처리를 위한 UASB 반응조 운전)

  • Bae, Byung-Uk
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.3 no.2
    • /
    • pp.37-45
    • /
    • 1995
  • The performance and the operational problems of UASB(Upflow Anaerobic Sludge Blanket) reactor for treatment of dairy wastewaters were investigated. Synthetic milk wastewater was successfully treated up to the loading rate of 3.9kg $COD/m^3.day$, with a specific gas production rate of 1. 23 I/I. day and a COD removal efficiency of over 90%. However, the sludge rising was observed at the loading rate of 2.1kg $COD/m^3.day$, due probably to the formation of scum layer at the surface of settling compartment. The BMP(biochemical methane potential) of raw milk wastewater and ice cream wastewater, measured by using SBT(serum bottle test), were 0.135 and 0.66ml $CH_4/mg\;COD_{added}$, respectively. The sludge activity increased more than 8 times from 0.159g $COD-CH_4/g$ VSS. d during 90 days of operation.

  • PDF

Estimation of Characteristics and Methane Production Rate of Food Waste (음식물류 폐기물 특성 및 메탄 발생가능량 평가)

  • Lee, Min-Kyu;Kim, Kyung;Shin, Hyun-Gon;Bae, Ki-Hwan;Kim, Choong-Gon;Park, Joon-Seok
    • Clean Technology
    • /
    • v.25 no.3
    • /
    • pp.223-230
    • /
    • 2019
  • This research was performed to evaluate the characteristics of food waste from 5 areas in Gangwon Province, Korea and to predict the $CH_4$ gas production rate. Food wastes were sampled in July and September, 2017. The amount of methane gas generation was evaluated through the biochemical methane potential (BMP) test and a calculation method using chemical composition. Average bulk density and pH of the food wastes were in the range of $0.758{\sim}0.850g\;cm^{-3}$ and 4.29 ~ 4.75, respectively. By physical composition, vegetables were the highest with 56.43 ~ 72.81% with fruits recording 5.31 ~ 8.95%, cereals 1.60 ~ 18.73%, fish and meat 4.47 ~ 12.11%, and filtrate 1.76 ~ 3.64%. The average water content was 69.30 ~ 75.87%, and VS and ash content were 22.50 ~ 27.98% and 1.63 ~ 2.48%, respectively. In addition, $BOD_5$, $COD_{Cr}$, and $COD_{Mn}$ were in the ranges of $17,690.3{\sim}33,154.9mg\;L^{-1}$, $106,212.3{\sim}128,695.5mg\;L^{-1}$, and $51,266.1{\sim}63,426.3mg\;L^{-1}$, respectively. The NaCl content ranged from 0.81 to 1.17%. The results of elemental analysis showed that the contents of C, H, O, N, and S were 44.87 ~ 48.1%, 7.12 ~ 7.57%, 40.13 ~ 43.78%, 3.22 ~ 4.14%, and 0.00 ~ 0.02%, respectively. In a comparison of the methane production yield per VS mass of food waste, there was no significant difference between the cumulative amount (${0.303{\sim}0.354m_{CH4}}^3\;{kg_{VS}}^{-1}$) by the BMP test and the theoretical amount (${0.294{\sim}0.352m_{CH4}}^3\;{kg_{VS}}^{-1}$) calculated by chemical composition.

Evaluation of Resource Recovery from Sorted Waste by MBT System (MBT시스템에 의해 선별(選別)된 생활폐기물(生活廢棄物)의 자원화(資源化) 평가(評價)에 관(關)한 연구(硏究))

  • Lee, Byung-Sun;Han, Sang-Kuk;Lee, Nam-Hoon;Kang, Jeong-Hee;Wie, June
    • Resources Recycling
    • /
    • v.22 no.5
    • /
    • pp.20-28
    • /
    • 2013
  • This study was carried out to evaluate the possibility of resource recovery for municipal solid waste(MSW) that sorted by a MBT system. First, physical property of MSW was similar to wastes carried into Sudokown landfill site. However, moisture of MSW was little higher than that. As a result of BMP test using organic fraction of MSW(OFMSWs), approximately 60 ~ 80 mL $CH_4/g$-VS of methane was occurred. Compared to the other studies, the value of methane is lower. It seems to be caused that high ratio of vinyl/plastic in OFMSWs. The other BMP test using sample of MBT system located in Sudokwon landfill was conducted each physical properties. According to the result of experiment, food waste makes 193 mL $CH_4/g$-VS, and paper is 102 mL $CH_4/g$-VS. However, there was not methane production in vinyl and rubber. Additionally, others that can't sort no more show 30 m $CH_4L/g$-VS of methane production. From the result of experimental data OFMSWs has high fraction of vinyl, rubber and other substance that difficult for biodegradation. Therefore it is need to sort of them.

Enhancement of Anaerobic Biodegradability using the Solubilized Sludge by the Cavitation process (Cavitation에 의해 가용화된 슬러지의 혐기성 생분해도 향상에 관한 연구)

  • Kim, Dongha;Lee, Jaegyu;Jung, Euitaek;Jeong, Hoyoung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.1
    • /
    • pp.25-32
    • /
    • 2014
  • In order to investigate the effective pretreatment methods in WAS(=waste activated sludge) solubilization, the values of SCOD yield per unit SS (SCOD/gSS.hr) were compared. After the hydrodynamic cavitation with pH of 12.5, SCOD increased to 7800 mg/L, SS decreased to 45 % and the solubilization rate was 29 %. Combination of alkality (pH 12.5) and the cavitation seems to be the optimal condition for sludge solubilization. After the cavitational pretreatment, efficiencies of anaerobic digestion of the unfiltered sludge(the control), raw sludge and pretreated sludge were evaluated with BMP(=biochemical methane potential) tests. For evaluation of the biodegradability characteristics of pretreated sewage sludge, the methane production has been measured for 6 months. The methane production of pretreated sludge increased 1.4 times than that of untreated sludge. The result indicates that the cavitationally pretreated sludge was a better biodegradability substrate in anaerobic condition compared to raw sludge. It is obvious that cavitational pretreatment could enhance not only solubilization but also biodegradability of WAS. In conclusion, cavitational pretreatment of WAS to convert the particulate into soluble portion was shown to be effective in enhancing the digestibility of the WAS.

A Study on Characteristics of Solubilization and Biogas Production for Sewage Sludge using Thermal Pretreatment (열적가용화공정을 이용한 하수슬러지의 가용화 특성 및 바이오가스 생산량 평가)

  • Jeong, Seong-Yeob;Yeon, Ho-Suk;Lee, Chang-Yeol;Lee, Jong-In;Chang, Soon-Woong
    • Resources Recycling
    • /
    • v.24 no.2
    • /
    • pp.46-54
    • /
    • 2015
  • In this study, an applicability of thermal pretreatment for primary and secondary sludge, which are generated in a sewage treatment plant, was evaluated. The efficiency and charateristics was investigated with each sludge after pretreatment under the condition of $100{\sim}220^{\circ}C$ for 30 minutes. As the result, it was found that $SCOD_{Cr}$, $NH_4{^+}$, VFAs concentrations increased as the pre-treatment temperature increased. For COD solubilization, it was also highly dependent on an increase of temperature resulting in acceleration on hydrolysis and acid fermentation. In the BMP (Biochemical Methane Potential) experiment, for the primary sludge, it showed the higher biogas production rate at a temperature of $220^{\circ}C$, however, the effect was insignificant (5.6%). Whereas, for the secondary sludge, the increase on biogass production rate was 38.8% ($180^{\circ}C$) and this means that the secondary sludge is more suitable for an applicability of thermal pretreatment.

Effect of Semi-Dry Anaerobic Digestion Using Dairy Cattle Manure and Pig Slurry (젖소 분과 돈분 슬러리를 이용한 반 건식 혐기소화 효과)

  • Jeong, Kwang-Hwa;Kim, Jung-Kon;Lee, Dong-jun;Lee, Dong-Hyun;Jeon, Jung-Hwan
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.26 no.2
    • /
    • pp.85-93
    • /
    • 2018
  • Semi-dry anaerobic digestion experiment using dairy cattle manure collected from dairy cattle house was conducted to analyze efficiency of biogas production. As a first experiment, Biochemical Methane Potential (BMP) test was carried out according to certain ratio of sample mixtures: dairy cattle manure, pig slurry, and mixture of dairy cattle manure and pig slurry. The amount of methane accumulated during BMP test period was high in the experimental groups containing dairy cattle manure. As a second experiment, semi-dry anaerobic digestion experiment was carried out using only the dairy cattle manure collected from floor of the dairy cattle house. Judging from the experimental results, the optimum hydraulic retention time (HRT) of semi-dry anaerobic digestion for dairy cattle manure containing 13% of TS was 25 days. The amount biogas generated from the semi-dry anaerobic digestor with the TS of 13% of the dairy cattle manure ranged from 1.36~1.50v/v-d and the average was 1.44v/v-d. The optimum HRT of the semi-dry anaerobic digestor for dairy cattle manure containing TS of 15% and the semi-dry anaerobic digestor for dairy cattle manure containing TS of 17% was the same as 30 days. The amount biogas generated from the semi-dry anaerobic digestor with the TS of 15% of the dairy cattle manure ranged from 1.42~1.52v/v-d and the average was 1.47v/v-d. The amount biogas generated from the semi-dry anaerobic digestor with the TS of 17% of the dairy cattle manure ranged from 1.50~1.61v/v-d and the average was 1.55v/v-d.

Evaluation of the Biogas Productivity Potential of Fish Waste: A Lab Scale Batch Study

  • Kafle, Gopi Krishna;Kim, Sang Hun
    • Journal of Biosystems Engineering
    • /
    • v.37 no.5
    • /
    • pp.302-313
    • /
    • 2012
  • Purpose: The biogas productivity potential of fish waste (FW) was evaluated. Methods: Batch trials were carried out in 1.3 L glass digesters kept in a temperature controlled chambers at $36.5^{\circ}C$. The first order kinetic model and the modified Gompertz model were evaluated for biogas production. The Chen and Hashimoto model was used to determine the critical hydraulic retention time (HRT $_{Critical}$) for FW under mesophilic conditions. The feasibility of co-digestion of FW with animal manure was studied. Results: The biogas and methane potential of FW was found to be 757 and 554 mL/g VS, respectively. The methane content in the biogas produced from FW was found to be 73% and VS removal was found to be 77%. There was smaller difference between measured and predicted biogas production when using the modified Gompertz model (16.5%) than using first order kinetic model (31%). The time period for 80%-90% of biogas production ($T_{80-90}$) from FW was calculated to be 50.3-53.5 days. Similarly, the HRT $_{Critical}$ for FW was calculated to be 13 days under mesophilic conditions. The methane production from swine manure (SM) and cow manure (CM) digesters could be enhanced by 13%-115% and 17%-152% by mixing 10%-90% of FW with SM and CM, respectively. Conclusions: The FW was found to be highly potential substrate for anaerobic digestion for biogas production. The modified Gompertz model could be more appropriate in describing anaerobic digestion process of FW. It could be promising for co-digestion of FW with animal manure.