• Title/Summary/Keyword: BMP(Biochemical Methane Potential

Search Result 56, Processing Time 0.047 seconds

Basic Study on the in-situ Biogenic Methane Generation from Low Grade Coal Bed (저품위 석탄의 원지반에서의 생물학적 메탄가스 생산에 관한 기초연구)

  • Wang, Fei;Jeon, Ji-Young;Lim, Hak-Sang;Yoon, Seok-Pyo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.23 no.4
    • /
    • pp.11-20
    • /
    • 2015
  • In the present work, a basic study on the in-situ biogenic methane generation from low grade coal bed was conducted. Lignite from Indonesia was used as a sample feedstock. A series of BMP (Biochemical Methane Potential) tests were carried out under the different experimental conditions. Although nutrients and anaerobic digester sludge were added to the coal, the produced amount of methane was limited. Both temperature control and particle size reduction showed little effect on the increase of methane potential. When rice straw was added to lignite as an external carbon source, methane yield of 94.4~110.4 mL/g VS was obtained after 60 days of BMP test. The calorific value of lignite after BMP test decreased (4.5~12.1 %) as increasing the content of rice straw (12.5~50 wt % of lignite), implying that anaerobic digestion of rice straw led to partial degradation of lignite. Therefore, rice straw could be used as an external carbon source for the start-up of in-situ biogas generation from low grade coal bed.

Anaerobic Digestion of Fish Offal(II) : Evaluation of Biodegradability Using Biochemical Methane Potential (생선 폐기물의 혐기성 소화 처리(II) : Biochemical Methane Potential을 이용한 생분해도 평가)

  • Jeong Byung-Gon
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.9 no.3
    • /
    • pp.154-159
    • /
    • 2006
  • It is essential to understand the decomposition characteristics for developing the optimum anaerobic digestion system of organic wastes. In this study, BMP (Biochemical Methane Potential) test using serum bottle was conducted to evaluate the anaerobic degradability of fish offal. 3 different groups of fish offal including waste from mackerel and hairtail handling except viscera and fish viscera were chosen for the substrates. Grinded fish offal was transferred anaerobically to serum bottle in amounts of 50 ml, 100 ml and 150 ml, respectively. BMP test was carried out in triplicate. Cumulative methane production and methane production rate depending on incubation time were evaluated. These results varied depending on substrate characteristics. The average values of ultimate methane yield ranged between $420ml{\cdot}CH_4/g{\cdot}VS$ and $490ml{\cdot}CH_4/g{\cdot}VS$, and the methane production and degradation rate of viscera were higher than those of other parts of fish offal. According to the analysis of elemental composition, average C/N ratio of fish offal used in this study was 5.2. Theoretical ultimate methane yield calculated from elemental composition was $522ml{\cdot}CH_4/g{\cdot}VS$. Biodegradability was calculated as 0.847.

  • PDF

Biochemical Methane Potential of Chemically Enhanced Primary Treatment Sludge for Energy-Independence of Sewage Treatment Plants (하수처리장 에너지 자립화를 위한 고도화학침전 슬러지의 메탄잠재력 평가)

  • Chun, Minsun;Kim, Hyoungho;Bae, Hyokwan
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.4
    • /
    • pp.322-331
    • /
    • 2020
  • By introducing chemically enhanced primary treatment (CEPT) in the first stage of sewage treatment, organic matter in sewage can be effectively recovered. Because CEPT sludge contains a high biodegradable organic matter in volatile solids (VS), it is feasible to convert the collected CEPT sludge into energy through anaerobic digestion. This study examined the properties and biochemical methane potential (BMP) of the CEPT sludge obtained from a sewage treatment plant located in an ocean area. The CEPT sludge contains a VS content of 37,597 mg/L, which is higher than that of excessive sludge (ES), i.e., 33,352 mg-VS/L. In the methane generation reaction, the lag period was as short as 1 to 2 days. The BMP for the CEPT sludge was 0.57 ㎥-CH4/kg-VSremoved which is better than that of ES, i.e., 0.36 ㎥-CH4/kg-VSremoved. Unfortunately, the CEPT sludge showed a high salinity as 0.56~0.75% probably due to the saline sewage. Due to the salinity, repeated BMP testing in a sequencing batch reactor showed significantly low methane production rates and BMPs. Also, the ES showed a strongly reduced BMP when the salinity was adjusted from 0.20 to 0.70% by NaCl. The ES mixture with higher CEPT content showed a better BMP, which is suitable for co-digestion. Besides, anaerobic digestion for 100% CEPT sludge can be a considerable option instead of co-digestion.

Effects of Substrate to Inoculum Ratio on the Biochemical Methane Potential of Piggery Slaughterhouse Wastes

  • Yoon, Young-Man;Kim, Seung-Hwan;Shin, Kook-Sik;Kim, Chang-Hyun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.4
    • /
    • pp.600-607
    • /
    • 2014
  • The aim of this study was to assess the effect of substrate to inoculum ratio (S/I ratio) on the biochemical methane potential (BMP) and anaerobic biodegradability ($D_{deg}$) of different piggery slaughterhouse wastes, such as piggery blood, intestine residue, and digestive tract content. These wastes were sampled from a piggery slaughterhouse located in Kimje, South Korea. Cumulative methane production curves for the wastes were obtained from the anaerobic batch fermentation having different S/I ratios of 0.1, 0.5, 1.0, and 1.5. BMP and anaerobic biodegradabilities ($D_{deg}$) of the wastes were calculated from cumulative methane production data for the tested conditions. At the lowest S/I ration of 0.1, BMPs of piggery blood, intestine residue, and digestive tract content were determined to be 0.799, 0.848, and $1.076Nm^3kg^{-1}-VS_{added}$, respectively, which were above the theoretical methane potentials of 0.539, 0.644, and $0.517Nm^3kg^{-1}-VS_{added}$ for blood, intestine residue, and digestive tract content, respectively. However, BMPs obtained from the higher S/I ratios of 0.5, 1.0, and 1.5 were within the theoretical range for all three types of waste and were not significantly different for the different S/I ratios tested. Anaerobic biodegradabilities calculated from BMP data showed a similar tendency. These results imply that, for BMP assay in an anaerobic reactor, the S/I ratio of anaerobic reactor should be above 0.1 and the inoculum should be sufficiently stabilized to avoid further degradation during the assay.

Thermophilic Anaerobic Digestion of Polyhydroxybutyrate with and without Thermo-alkaline Pretreatment (열적-알칼리성 전처리 유무에 따른 폴리하이드록시부티레이트의 고온 혐기성 소화 영향 연구)

  • Jihyeon Lee;Joonyeob Lee
    • Journal of Environmental Science International
    • /
    • v.33 no.2
    • /
    • pp.121-129
    • /
    • 2024
  • The study investigated the effect of thermo-alkaline pretreatment on the solubilization of polyhydroxybutyrate (PHB) and its potential to enhance of thermophilic anaerobic digestion, focusing on biochemical methane potential (BMP) and methane production rate, using two different particle sizes of PHB (1500 ㎛ and 400 ㎛). Thermo-alkaline pretreatment tests were conducted at 90 ℃ for 24 hours with varying NaOH dosages from 0-80% (w/w). BMP tests with untreated PHB exhibited methane production ranging from 150.4~225.4 mL CH4/g COD and 21.5~24.2 mL CH4/g VSS/d, indicating higher methane production for smaller particle sizes of PHB, 400 ㎛. Thermo-alkaline pretreatment tests achieved a 95.3% PHB solubilization efficiency when 400 ㎛ PHB particles were treated with 80% NaOH dosage at 90 ℃ for 24 hours. BMP tests with pretreated PHB showed substantial improvement in thermophilic anaerobic digestion, with an increase of up to 112% in BMP and up to 168% in methane production rate. The results suggest that a combined pretreatment process, including physical (400 ㎛ PHB particles) and thermo-alkaline (90 ℃, 40-80% NaOH dosage, and 24 hours reaction time), is required for high-rate thermophilic anaerobic digestion of PHB with enhanced methane production.

Anaerobic Biodegradation of Lignin by BMP Test and Measurement of Lignin-derived Compound Using GC & GC/MS (BMP법에 의한 리그닌의 혐기성 분해 및 GC와 GC/MS을 이용한 리그닌 분해산물 측정)

  • Kim, Seog-Ku
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.16 no.3
    • /
    • pp.46-51
    • /
    • 2008
  • The traditional view of the fate of lignin under anaerobic conditions is that it is recalcitrant because molecular oxygen is required for depolymerization. The presence of lignin is apparently the most important factor affecting the biodegradability of ligneous materials. The initial step in the degradation of ligneous material to smaller intermediates is catalyzed by enzymes secreted by microorganisms and is generally regarded as the rate limiting step in the microbial mineralization of organic matter. Biochemical methane potential (BMP) test, typically used to assess anaerobic biodegradability of liquid wastes with added nutrients and bacteria, have been adapted to assess initial biodegradation of ligneous material under anaerobic conditions. A method based on selective inhibition of microorganism activity, by 3% toluene, has been used to measure using the initial degradation rate of ligneous material and the accumulation of lignin-derived compounds.

  • PDF

Biochemical Methane Potential Analysis for Anaerobic Digestion of Marine Algae (해조류의 혐기소화를 위한 메탄생산퍼텐셜 분석)

  • Lee, Jun-Hyeong;Kim, Tae-Bong;Shin, Kook-Sik;Yoon, Young-Man
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.28 no.4
    • /
    • pp.23-33
    • /
    • 2020
  • Marine algae(Macro algae) are easily bio-degradable, and by-products are available as feed and fertilizer. The biomass of marine algae has higher CO2 absorption capacity than the wood system, and is highly valuable in use due to its fast growth speed and wide cultivation area without special cost for raw material production. In 2018, Marine algae production was 1,722,486ton, such as Saccharina japonica, Undaria pinnatifida and Porphyra tenera, the large amounts of by-products have been generated in the food processing facilities for commercialization. In this study, Saccharina japonica, Undaria pinnatifida were collected in the south coast region and Porphyra tenera was collected in the west coast region. The theoretical methane potential and biochemical methane potential(BMP) were analyzed, and Modified Gompertz model and Parallel first order kinetics model were adopted for the interpretation of the cumulative methane production curves. The theoretical methane potential of Saccharina japonica, Undaria pinnatifida and Porphyra tenera were 0.393, 0.373 and 0.435 N㎥/kg-VS, respectively. BMP obtained by the Modified gompertz model 0.226, 0.227, and 0.241 N㎥/kg-VS for Saccharina japonica, Undaria pinnatifida and Porphyra tenera, respectively. And BMP obtained by the Parallel first order kinetics model were 0.220, 0.243, and 0.240 N㎥/kg-VS for Saccharina japonica, Undaria pinnatifida and Porphyra tenera, respectively.

Estimation of Ultimate Methane Yields and Biodegradability from Urban Stream Sediments Using BMP Test (BMP(Biochemical Methane Potential) test를 통한 도심하천 퇴적물의 최종메탄발생수율 및 생분해도 산정)

  • Song, Jaehong;Kim, Seogku;Lee, Junki;Koh, Taehoon;Lee, Taeyoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.2
    • /
    • pp.33-42
    • /
    • 2010
  • The main objective of this study was to offer informations about the current conditions of stream sediments and to evaluate biochemical methane potentials of stream sediments from the urban streams in Busan city using conventional BMP tests. First we select total 5 urban streams and collect sediment samples. Then, COD, proximate analysis, volatile solid, organic carbon content and elemental analysis were conducted to determine characteristics of the sediments. Results show that COD, volatile solid and organic carbon content are determined in the range of $15.20{\sim}75.07mg\;g^{-1}$, 2.34~11.54% and 1.28~34.21%, respectively. Also, several biochemical methane potential tests were performed in a laboratory. As a result, pH values of the reactors generally increased and then stabilized at 7.11~7.35. In addition, C/N ratio, ultimate methane and carbon dioxide yield (mL/g VS) and biodegradability (%) were determined to 1.05~10.27, 10.1~179.4, 10.3~34.4 and 4.0~30.1, respectively. For the determination of the correlations between ultimate methane yield and ultimate carbon dioxide yield, C/N ratio, COD, volatile solid and organic carbon content, a linear model was fitted to the data using a least-squares algorithm. As a result, except for COD ($r^2=0.7586$) and volatile solid ($r^2=0.7876$), Linear model was well fitted to each data with good values of the correlation coefficient ($r^2=0.9795{\sim}0.9858$). Finally, we propose empirical equations, which contain C/N ratio or TOC, for the prediction of ultimate methane yield for the urban streams in Busan city.

Biochemical Methane Potential of Agricultural Waste Biomass (농산 바이오매스의 메탄 생산 퍼텐셜)

  • Shin, Kook-Sik;Kim, Chang-Hyun;Lee, Sang-Eun;Yoon, Young-Man
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.5
    • /
    • pp.903-915
    • /
    • 2011
  • Recently, anaerobic methane production of agricultural waste biomass has received increasing attention. Until now domestic BMP (Biochemical methane potential) studies concerned with agricultural waste biomass have concentrated on the several waste biomass such as livestock manure, food waste, and sewage sludge from WWTP (Waste water treatment plant). Especially, the lack of standardization study of BMP assay method has caused the confused comprehension and interpretation in the comparison of BMP results from various researchers. Germany and USA had established the standard methods, VDI 4630 and ASTM E2170-01, for the analysis of BMP and anaerobic organic degradation, respectively. In this review, BMP was defined in the aspect of organic material represented as COD (Chemical oxygen demand) and VS (Volatile solid), and the influence of several parameters on the methane potential of the feedstock was presented. In the investigation of domestic BMP case studies, BMP results of 18 biomass species generating from agriculture and agro-industry were presented. And BMP results of crop species reported from foreign case studies were presented according to the classification system of crops such as food crop, vegetables, oil seed and specialty crop, orchards, and fodder and energy crop. This review emphasizes the urgent need for characterizing the innumerable kind of biomass by their capability on methane production.

Effects of Supplementation of Mixed Methanogens and Rumen Cellulolytic Bacteria on Biochemical Methane Potential (혼합 메탄균과 반추위 섬유소 분해균 첨가가 메탄발생에 미치는 영향)

  • Kim, Ji-Ae;Yoon, Young-Man;Kim, Chang-Hyun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.4
    • /
    • pp.515-523
    • /
    • 2012
  • The study investigated the biochemical methane potential (BMP) assay of cellulose supplementing with mixed methanogens and cellulolytic bacteria to improve anaerobic digestion for methane production. For the BMP assay, 7 different microbial supplementation groups were consisted of the cultures of mixed methanogens (M), Fibrobacter succinogenes (FS), Ruminococcus flavefaciensn (RF), R. albus (RA), RA+FS and M+RA+FS including control. The cultures were added in the batch reactors with the increasing dose levels of 1% (0.5 mL), 3% (1.5 mL) and 5% (2.5 mL). Incubation for the BMP assay was carried out for 40 days at $38^{\circ}C$ and anaerobic digestate obtained from an anaerobic digester with pig slurry as inoculum was used. In results, 5% FS increased total biogas and methane production up to 10.4~22.7% and 17.4~27.5%, respectively, compared to other groups (p<0.05). Total solid (TS) digestion efficiency showed a similar trend to the total biogas and methane productions. Generally the TS digestion efficiency of the FS group was higher than that of other groups showing at the highest value of 64.2% in the 5% FS group. Volatile solid (VS) digestion efficiencies of 68.4 and 71.0% in the 5% FS and the 5% RF were higher than other groups. After incubation, pH values in all treatment groups were over 6.4 indicating that methanogensis was not inhibited during the incubation. In conclusion, the results indicated that the hydrolysis stage for methane production in anaerobic batch reactors was the late-limiting stage compared with the methanogenesis stage, and especially, as the supplementation levels of F. succinogenes supplementation increased, the methane production was increased in the BMP assay compared with other microbial culture addition.