Browse > Article
http://dx.doi.org/10.5713/ajas.2013.13537

Effects of Substrate to Inoculum Ratio on the Biochemical Methane Potential of Piggery Slaughterhouse Wastes  

Yoon, Young-Man (Biogas Research Center, Hankyong National University)
Kim, Seung-Hwan (Biogas Research Center, Hankyong National University)
Shin, Kook-Sik (Biogas Research Center, Hankyong National University)
Kim, Chang-Hyun (Department of Animal Life and Environment Science, Hankyong National University)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.27, no.4, 2014 , pp. 600-607 More about this Journal
Abstract
The aim of this study was to assess the effect of substrate to inoculum ratio (S/I ratio) on the biochemical methane potential (BMP) and anaerobic biodegradability ($D_{deg}$) of different piggery slaughterhouse wastes, such as piggery blood, intestine residue, and digestive tract content. These wastes were sampled from a piggery slaughterhouse located in Kimje, South Korea. Cumulative methane production curves for the wastes were obtained from the anaerobic batch fermentation having different S/I ratios of 0.1, 0.5, 1.0, and 1.5. BMP and anaerobic biodegradabilities ($D_{deg}$) of the wastes were calculated from cumulative methane production data for the tested conditions. At the lowest S/I ration of 0.1, BMPs of piggery blood, intestine residue, and digestive tract content were determined to be 0.799, 0.848, and $1.076Nm^3kg^{-1}-VS_{added}$, respectively, which were above the theoretical methane potentials of 0.539, 0.644, and $0.517Nm^3kg^{-1}-VS_{added}$ for blood, intestine residue, and digestive tract content, respectively. However, BMPs obtained from the higher S/I ratios of 0.5, 1.0, and 1.5 were within the theoretical range for all three types of waste and were not significantly different for the different S/I ratios tested. Anaerobic biodegradabilities calculated from BMP data showed a similar tendency. These results imply that, for BMP assay in an anaerobic reactor, the S/I ratio of anaerobic reactor should be above 0.1 and the inoculum should be sufficiently stabilized to avoid further degradation during the assay.
Keywords
S/I Ratio; Biochemical Methane Potential; Piggery Slaughterhouse Waste; Anaerobic Digestion;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Angelidaki, I. and B. K. Ahring. 1992. Effects of free long-chain fatty acids on thermophilic anaerobic digestion. Appl. Microbiol. Biotechnol. 37:808-812.
2 Angelidaki, I., M. Alves, B. Bolzonella, L.Borzacconi, J. L. Campos, A. J. Guwy, S. Kalyuzhnyi, P. Jenicek, and J. B. van Lier. 2009. Defining the biomethane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays. Water Sci. Technol. 59:927-934.   DOI   ScienceOn
3 Angelidaki, I. and W. Sanders. 2004. Assessment of the anaerobic biodegradability of macropollutants. Rev. Environ. Sci. Biotechnol. 3:117-129.   DOI   ScienceOn
4 APHA. 1998. Standard methods for the examination of water and wastewater. 20th Ed. American Public Health Association, Washington, DC.
5 Beuvink, J. M., S. F. Spoelstra, and R. J. Hogendrop. 1992. An automated method of measuring the time course of gas production of feedstuffs incubated with buffered rumen fluid. Neth. J. Agric. Sci. 40:401-407.
6 Costa, J. C., S. G. Barbosa, M. M. Alves, and D. Z. Sousa. 2012. Thermochemical pre- and biological co-treatments to improve hydrolysis and methane production from poultry litter. Bioresour. Technol. 111:141-147.   DOI   ScienceOn
7 Boyle, W. C. 1976. Energy recovery from sanitary landfills-a review. In: Microbial Energy Conversion (Ed. H. G. Schlegel and J. Barnea). Pergamon Press, Oxford, UK. pp. 119-138.
8 Chen, Y., J. J. Cheng, and K. S. Creamer. 2008. Inhibition of anaerobic digestion process: a review. Bioresour. Technol. 99:4044-4064.   DOI   ScienceOn
9 Chynoweth, D. P., C. E. Turick, J. M. Owens, D. E. Jerger, and M. W. Peck. 1993. Biochemical methane potential of biomass and waste feedstocks. Biomass Bioenergy. 5:95-111.   DOI   ScienceOn
10 Hansen, T. L., J. E. Schmidt, I. Angelidaki, E. Marca, J. C. Jansen, H. Mosbæk, and T. H. Christensen. 2004. Measurement of methane potentials of solid organic waste. Waste Manag. 24:393-400.   DOI   ScienceOn
11 Hashimoto, A. G. 1989. Effect of inoculum/substrate ratio on methane yield and production rate from straw. Biol. Wastes 28:247-255.   DOI   ScienceOn
12 Kim, S. H., C.-H. Kim, and Y. M. Yoon. 2011. Bioenergy and methane production potential by life cycle assessment in swine waste biomass. Korean J. Soil Sci. Fert. 44:1245-1251.   DOI   ScienceOn
13 Lay, J. J., Y. Y. Li, and T. Noike. 1998. Mathematical model for methane production from landfill bioreactor. J. Environ. Eng. 124:730-736.   DOI   ScienceOn
14 Lin, J. G., Y. S. Ma, A. C. Chao, and C. L. Huang. 1999. BMP test on chemically pretreated sludge. Bioresour. Technol. 68:187-192.   DOI   ScienceOn
15 Liu, C., B. Xiao, A. Dauta, G. Peng, S. Liu, and Z. Hu. 2009. Effect of low power ultrasonic radiation on anaerobic biodegradability of sewage sludge. Bioresour. Technol. 100:6217-6222.   DOI   ScienceOn
16 Palatsi, J., J. Illa, F. X. Prenafeta-Boldu, M. Laureni, B. Fernandez, I. Angelidaki, and X. Flotats. 2010. Long-chain fatty acids inhibition and adaptation process in anaerobic thermophilic digestion: batch tests, microbial community structure and mathematical modelling. Bioresour. Technol. 101:2243-2251.   DOI   ScienceOn
17 Luste, S., S. Luostarinen, and M. Sillanpaa. 2009. Effect of pre-treatments on hydrolysis and methane production potentials of by-products from meat-processing industry. J. Hazard. Mater. 164:247-255.   DOI   ScienceOn
18 Rodriguez-Abalde, A., B. Fernandez, G. Silvestre, and X. Flotats. 2011. Effects of thermal pre-treatments on solid slaughterhouse waste methane potential. Waste manag. 31:1488-1493.   DOI   ScienceOn
19 Owens, J. M. and D. P. Chynoweth. 1993. Biochemical methane potential of municipal solid-waste (MSW) components. Water Sci. Technol. 27:1-14.   DOI   ScienceOn
20 Raposo, F., C. J. Banks, I. Siegert, S. Heaven, and R. Borja. 2006. Influence of inoculum to substrate ratio on the biochemical methane potential of maize in batch tests. Proc. Biochem. 41:1444-1450.   DOI   ScienceOn
21 Salminen, E., J. Einola and J. Rintala. 2003. The methane production of poultry slaughtering residues and effects of pre-treatments on the methane production of poultry feather. Environ. Technol. 24:1079-1086.   DOI
22 Williams, A., M. Amat-Marco, and M. D. Collins. 1996. Phylogenetic analysis of Butyrivibrio strains reveals three distinct groups of species within the Clostridium subphylm of gram-positive bacteria. Int. J. Syst. Bacterol. 46:195-199.   DOI   ScienceOn
23 Vavilin, V. A., B. Fernandez, J. Palatsi, and X. Flotats. 2008. Hydrolysis kinetics in anaerobic degradation of particulate organic material: an overview. Waste Manag. 28:939-951.   DOI   ScienceOn
24 VDI 4630. 2006. Fermentation of organic materials, characterisation of the substrates, sampling, collection of material data, fermentation test. VDI-Handbuch Energietechnik.
25 Veeken, A. and B. Hamelers. 1999. Effect of temperature on hydrolysis rates of selected biowaste components. Bioresour. Technol. 69:249-254.   DOI   ScienceOn
26 Neves, L., R. Oliveira, and M. M. Alves. 2004. Influence of inoculums activity on the bio-methanization of a kitchen waste under different waste/inoculum ratios. Proc. Biochem. 39:2019-2024.   DOI   ScienceOn
27 Zwietering, H. M., I. Jongenburger, F. M. Rombusts, and K. van't Riet. 1990. Modeling of the bacterial growth curve. Appl. Environ. Microbiol. 56:1875-1881.
28 Raposo, F., R. Borja, B. Rincon, and A. M. Jimenez. 2008. Assessment of process control parameters in the biochemical methane potential of sunflower oil cake. Biomass Bioenergy 32:1235-1244.   DOI   ScienceOn