DOI QR코드

DOI QR Code

Biochemical Methane Potential Analysis for Anaerobic Digestion of Marine Algae

해조류의 혐기소화를 위한 메탄생산퍼텐셜 분석

  • Lee, Jun-Hyeong (School of Applied science in Natureal Resources & Environment, Hankyong National University) ;
  • Kim, Tae-Bong (KECsystem CO., Ltd.) ;
  • Shin, Kook-Sik (Biogas Research Center, Hankyong National Universtiy) ;
  • Yoon, Young-Man (School of Applied science in Natureal Resources & Environment, Hankyong National University)
  • 이준형 (국립 한경대학교 응용자원환경학부) ;
  • 김태봉 ((주)케이이씨시스템) ;
  • 신국식 (국립 한경대학교 바이오가스연구센터) ;
  • 윤영만 (국립 한경대학교 응용자원환경학부)
  • Received : 2020.11.18
  • Accepted : 2020.12.04
  • Published : 2020.12.30

Abstract

Marine algae(Macro algae) are easily bio-degradable, and by-products are available as feed and fertilizer. The biomass of marine algae has higher CO2 absorption capacity than the wood system, and is highly valuable in use due to its fast growth speed and wide cultivation area without special cost for raw material production. In 2018, Marine algae production was 1,722,486ton, such as Saccharina japonica, Undaria pinnatifida and Porphyra tenera, the large amounts of by-products have been generated in the food processing facilities for commercialization. In this study, Saccharina japonica, Undaria pinnatifida were collected in the south coast region and Porphyra tenera was collected in the west coast region. The theoretical methane potential and biochemical methane potential(BMP) were analyzed, and Modified Gompertz model and Parallel first order kinetics model were adopted for the interpretation of the cumulative methane production curves. The theoretical methane potential of Saccharina japonica, Undaria pinnatifida and Porphyra tenera were 0.393, 0.373 and 0.435 N㎥/kg-VS, respectively. BMP obtained by the Modified gompertz model 0.226, 0.227, and 0.241 N㎥/kg-VS for Saccharina japonica, Undaria pinnatifida and Porphyra tenera, respectively. And BMP obtained by the Parallel first order kinetics model were 0.220, 0.243, and 0.240 N㎥/kg-VS for Saccharina japonica, Undaria pinnatifida and Porphyra tenera, respectively.

해조류는 분해에 어려움이 없고 부산물 역시 사료와 비료 등으로 이용이 가능해 에너지로의 전환율이 높으며 성장과정에서의 탄소 흡수능력과 원료 생산에 특별한 비용이 들지 않고 빠른 생장속도와 넓은 재배 면적으로 이용가치가 높은 바이오매스로 볼 수 있다. 우리나라는 삼면이 바다로 둘러싸여 있어 해조류 양식 발달 되어 왔으며, 2018년 기준 해조류 생산량은 총 1,722,486ton이며 이중 96% 이상을 차지하는 다시마(Saccharina japonica), 김(Porphyra tenera), 미역(Undaria pinnatifida)은 제품화 되는 과정에서 많은 양이 부산물로 발생하고 있다. 본 연구에서는 해조류 부산물의 혐기소화를 위하여 다시마, 미역, 김의 이화학적 성상을 분석하였으며, 이론적 메탄퍼텐셜과 생물화학적 메탄퍼텐셜(BMP)을 분석하여 혐기적 메탄생산 수율을 파악하였다. 다시마, 미역, 김의 이론적 메탄퍼텐셜은 0.393, 0.373, 0.435 N㎥/kg-VS로 나타났으며, 회분식 혐기반응기를 이용한 생물화학적 메탄생산퍼텐셜을 Modified gompertz model로 분석한 결과 0.226, 0.227, 0.241 N㎥/kg-VS로 산출되었으며, Parallel first order kinetics model로 분석한 결과 0.220, 0.243, 0.240 N㎥/kg-VS로 산출되었다.

Keywords

References

  1. Cho, Y. S., Yearbook of Energy statistics., Korea Energy Economics Institute, pp. 4-5. (2018).
  2. Shin, K. S., Kim, C. H., Lee, S. E. and Yoon, Y. M., "Biochemical Methane Potential of Agricultural Byproduct in Greenhouse Vegetable Crops", Korean Journal of Soil Science and Fertilizer, 44(6), pp. 1252-1257. (2011). https://doi.org/10.7745/KJSSF.2011.44.6.1252
  3. Yoshida, M., Liu, Y., Uchida, S., Kawarada, K., Ukagami, Y., Ichinose, H., Kaneko, S. and Fukuda, K., "Effects of cellulose crystallinity hemicellulose and lignin on the enzymatic hydrolysis of Miscanthus sinensis to monosaccharides", Biosci. Biotechnol. Biochem, 72(3), pp. 805-810. (2008). https://doi.org/10.1271/bbb.70689
  4. VDI 4630. Fermentation of organic materials, characterisation of the substrate, sampling, collection of material daa, fermentation test. VDI-Handbuch Energietechnik. (2006).
  5. Xu, H., Xu., Li, Y., Hua, D. L., Mu, H., Zhao, Y. X. and Chen, G., "Methane production from the anaerobic digestion of substrates from corn stover: Differences between the stem bark, stem pith, and leaves", Science of the Total Environment, 694, pp. 1-7. (2019).
  6. Boyle, W. C., "Energy recovery from sanitary landfills a review. in : Microbial Energy Conversion (Eds. H. G. Schlegel and J. Barnea)", Pergamon Press Oxford UK, pp. 119-138. (1976).
  7. Oh, S. Y and Yoon, Y. M., "Assesment of methane potential in hydro-thermal carbonization reaction of organic sludge using parallel first order kinetics", Korean Journal of Environmental Agriculture, 35, pp. 128-136. (2016). https://doi.org/10.5338/KJEA.2016.35.2.13
  8. Lay, J. J., Li, Y. Y. and Noike, T., "Mathematical model for methane production from landfill bioreactor", J. Environ. Eng, 124(8), pp. 730-736. (1998). https://doi.org/10.1061/(ASCE)0733-9372(1998)124:8(730)
  9. Rao, M. S., Singh, S. P., Singh, A. K. and Sodha M. S., "Bioenergy conversion studies of organic fraction of MSW: Assessment of ultimate bioenergy production of municipal garbage", Applied Energy 66, pp. 75-87. (2000). https://doi.org/10.1016/S0306-2619(99)00056-2
  10. Luna-delRisco, M., Normak, A. and Orupold, K., "Biochemical methane potential of different organic wastes and energy crops from Estonia", Agronomy Research 9(1-2), pp. 331-342. (2011).
  11. Shin, K. S., "Factor analysis of methane production potential from crop and livestock biomass", Ph.D. Thesis, Hankyong National University, Anseong, Korea. (2013).
  12. Sorensen, A. H., Winther-Nielsen, M. and Ahring, B. K., "Kinetics of lactate, acetate and propionate in unadapted and lactate-adapted thermophilic, anaerobic sewage sludge: the influence of sludge adaptation for start-up of thermophilic UASBreactors", Applied microbiology and biotechnology, 34(6), pp. 823-827. (1991). https://doi.org/10.1007/BF00169358
  13. Van Soest, P. J. and Robertson, J. B., Analysis of forage and fibrous foods, Cornell University. (1985).
  14. Rongoei, P. J. K. and Outa, N, O., APHA (American Pubilic Health Association), Standard methods for the examination of water and wastewater. 20th Ed. (1998).
  15. McCarty, P. L., "Anaerobic waste treatment fundamentals - Part Three: Toxic materials and their control", Public Works, 95, pp. 91-94. (1964).
  16. Van, V., "Adaption of methanogenic sludge to high ammonia-nitrogen concentration", Water research, 13(10), pp. 995-999. (1979). https://doi.org/10.1016/0043-1354(79)90194-5
  17. Jean H, E. A., Thomas, L., Zeina, H., Dominique, S., Nicolas, L., Richard, G. M. and Jean-Louis, L., "Anaerobic digestion of grape pomace: Biochemical characterization of the fractions and methane production in batch and continuous digesters", Waste Management, 50, pp. 275-282. (2016). https://doi.org/10.1016/j.wasman.2016.02.028
  18. My, C., Anders, L. and Femando, M. S., "The effects of substrate pre-treatment on anaerobic digestion systems: A review", Waste Management, 32(9), pp. 1634-1650. (2012). https://doi.org/10.1016/j.wasman.2012.04.016
  19. Yoo, J. S., Kim, C. H. and Yoon, Y. M., "Biochemical Methane Potential Analysis for Anaerobic Digestion of Giant Miscanthus (Miscanthus sacchariflorus)", Korean Journal of Environmental Agriculture, 36(1), pp. 1-7. (2017). https://doi.org/10.5338/KJEA.2017.36.1.01