• Title/Summary/Keyword: BM3D

Search Result 838, Processing Time 0.033 seconds

A Study on the Design of Dual-Band Mixer for WLAN 802.11a/b/g Applications (802.11a/b/g WLAN용 이중대역 혼합기 설계에 관한 연구)

  • Park Wook-Ki;Go Min-Ho;Kang Suk-Youb;Park Hyo-Dal
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.11 s.102
    • /
    • pp.1106-1113
    • /
    • 2005
  • This paper presents a dual-band mixer for multi-standards of IEEE 802.1la/b/g using a single local oscillator, so as to improve the defects of legacy systems. Those systems have duplicate local oscillators and mixers to handle dual band signals, increasing complexity of system and power loss. The proposed circuit shows 11.6 dB, 16.8 dB of conversion loss and 8.77 dBm, 12.5 dBm of IIP3(Input 3rd Intercept Point) for respective bands when the two RF inputs of 2.452 and 5.260 GHz are down-converted to the identical 356 MHz If frequency. The RF-LO isolations are measured 36 dB, 41 dB at each frequencies and over 50 dB of LO-IF isolations are achieved at all cases.

A RF Frong-End CMOS Transceiver for 2㎓ Dual-Band Applications

  • Youn, Yong-Sik;Kim, Nam-Soo;Chang, Jae-Hong;Lee, Young-Jae;Yu, Hyun-Kyu
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.2 no.2
    • /
    • pp.147-155
    • /
    • 2002
  • This paper describes RF front-end transceiver chipset for the dual-mode operation of PCS-Korea and IMT-2000. The transceiver chipset has been implemented in a $0.25\mutextrm{m}$ single-poly five-metal CMOS technology. The receiver IC consists of a LNA and a down-mixer, and the transmitter IC integrates an up-mixer. Measurements show that the transceiver chipset covers the wide RF range from 1.8GHz for PCS-Korea to 2.1GHz for IMT-2000. The LNA has 2.8~3.1dB NF, 14~13dB gain and 5~4dBm IIP3. The down mixer has 15.5~16.0dB NF, 15~13dB power conversion gain and 2~0dBm IIP3. The up mixer has 0~2dB power conversion gain and 6~3dBm OIP3. With a single 3.0V power supply, the LNA, down-mixer, and up-mixer consume 6mA, 30mA, and 25mA, respectively.

Microwave Transistor Oscillator using Dielectric Resonators as a Feedback Element (수전체 공진기를 궤한 소자로 사용한 발진기)

  • Cho, Young-Ki;Sohng, Kyu-Ik;Kim, Young-Wan;Son, Hyon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.10 no.3
    • /
    • pp.105-114
    • /
    • 1985
  • 2-port stable bipolar transistor oscillator is realized in S band. Oscillator is fabricated by using a highly frequency stabilized 3 identical dielectric resonators and negative resistance is found by means of 3 ports scattering parameters. In this paper, using dielectric resonators as a feedback element. We obtained maximum output 14dBm. 10dBm from collector and base respectively.

  • PDF

An L-band Stacked SOI CMOS Amplifier

  • Kim, Young-Gi;Hwang, Jae-Yeon
    • Journal of IKEEE
    • /
    • v.20 no.3
    • /
    • pp.279-284
    • /
    • 2016
  • This paper presents a two stage L-band power amplifier realized with a $0.32{\mu}m$ Silicon-On-Insulator (SOI) CMOS technology. To overcome a low breakdown voltage limit of MOSFET, stacked-FET structures are employed, where three transistors in the first stage amplifier and four transistors in the second stage amplifier are connected in series so that their output voltage swings are added in phase. The stacked-FET structures enable the proposed amplifier to achieve a 21.5 dB small-signal gain and 15.7 dBm output 1-dB compression power at 1.9 GHz with a 122 mA DC current from a 4 V supply. The amplifier delivers a 19.7 dBm. This paper presents a two stage L-band power amplifier realized with a $0.32{\mu}m$ Silicon-On-Insulator (SOI) CMOS technology. To overcome a low breakdown voltage limit of MOSFET, stacked-FET structures are employed, where three transistors in the first stage amplifier and four transistors in the second stage amplifier are connected in series so that their output voltage swings are added in phase. The stacked-FET structures enable the proposed amplifier to achieve a 21.5 dB small-signal gain and 15.7 dBm output 1-dB compression power at 1.9 GHz with a 122 mA DC current from a 4 V supply. The amplifier delivers a 19.7 dBm saturated output power with a 16 % maximum Power Added Efficiency (PAE). A bond wire fine tuning technology enables the amplifier a 23.67 dBm saturated output power with a 20.4 % maximum PAE. The die area is $1.9mm{\times}0.6mm$.

A High Power SP3T MMIC Switch (고출력 SP3T MMIC 스위치)

  • 정명득;전계익;박동철
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.5
    • /
    • pp.782-787
    • /
    • 2000
  • The monolithic single-pole three-throw(SP3T) GaAs PIN diode switch circuit for the broadband and high power application was designed, fabricated and characterized. To improve the power handling capability, buffer layers of the diode employ both low temperature buffer and superlattice buffer. The diode show the breakdown voltage of 65V and turn-on voltage of 1.3V. The monolithic integrated switch employed microstrip lines and backside via holes for low-inductance signal grounding. The vertical epitaxial PIN structure demonstrated better microwave performance than planar type structures due to lower parasitics and higher quality intrinsic region. As the large signal characteristics of the fabricated SP3T MMIC switch, the insertion loss was measured less than 0.6dB and the isolation better than 50dB when the input power was increased from 8dBM to 32dBm at 14.5GHz.

  • PDF

A D-Band Balanced Subharmonically-Pumped Resistive Mixer Based on 100-nm mHEMT Technology

  • Campos-Roca, Y.;Tessmann, A.;Massler, H.;Leuther, A.
    • ETRI Journal
    • /
    • v.33 no.5
    • /
    • pp.818-821
    • /
    • 2011
  • A D-band subharmonically-pumped resistive mixer has been designed, processed, and experimentally tested. The circuit is based on a $180^{\circ}$ power divider structure consisting of a Lange coupler followed by a ${\lambda}$/4 transmission line (at local oscillator (LO) frequency). This monolithic microwave integrated circuit (MMIC) has been realized in coplanar waveguide technology by using an InAlAs/InGaAs-based metamorphic high electron mobility transistor process with 100-nm gate length. The MMIC achieves a measured conversion loss between 12.5 dB and 16 dB in the radio frequency bandwidth from 120 GHz to 150 GHz with 4-dBm LO drive and an intermediate frequency of 100 MHz. The input 1-dB compression point and IIP3 were simulated to be 2 dBm and 13 dBm, respectively.

Linearization of CMOS Drive Amplifier with IMD Canceller (IMD 상쇄기를 적용한 CMOS 구동 증폭기 선형화 방법)

  • Kim, Do-Gyun;Hong, Nam-Pyo;Moon, Yon-Tae;Choi, Young-Wan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.5
    • /
    • pp.999-1003
    • /
    • 2009
  • We have designed and fabricated a linear drive amplifier with a novel intermodulation distortion(IMD) canceller using $0.18{\mu}m$ CMOS process. The drive amplifier with IMD canceller is composed of a cascode main amplifier and an additional common-source IMD canceller. Since the IMD canceller generates IM3($3^{rd}$-order imtermodulation) signal with $180^{\circ}$ phase difference against the IM3 of the cascode main amplifier, the IM3 power is drastically eliminated. As of the measurement results, $OP_{1dB}$, $OIP_3$, and power-add efficiency are 5.5 dBm, 15.5 dBm, and 21%, respectively. Those are 5 dB, 6 dB, and 13.5% enhanced values compared to a conventional cascode drive amplifier. The IMD3 of the drive amplifier with IMD canceller is enhanced more than 10 dB compared to that of the conventional cascode drive amplifier for input power ranges from -22 to -14 dBm.

Laboratory Measurement to Provide Threshold of Visibility for Terrestrial 4K-UHDTV Broadcasting based on HEVC over DVB-T2 (HEVC over DVB-T2 기반 지상파 4K-UHDTV 방송을 위한 양시청 기준값 실험실 테스트 결과)

  • Jeon, Sungho;Kim, Sanghoon;Hahm, Sangjin;Yim, Zungkon;Suh, Young-Woo
    • Journal of Broadcast Engineering
    • /
    • v.21 no.4
    • /
    • pp.506-514
    • /
    • 2016
  • In this study, HEVC over DVB-T2 systems with a bandwidth of 6 MHz is considered, particularly for the terrestrial 4K-UHDTV broadcasting service in the Republic of Korea. The threshold of visibility carrier-to-noise power ratio (ToV C/N) and the receiver minimum required input level (sensitivity) for satisfying the subjective picture failure (SPF) condition are measured in the laboratory. It is observed, for transmitting 26.37 Mbps data stream correctly, that ToV C/N is 18.8 dB on average, and the receiver sensitivity is varied from minimum -84.2 dBm to maximum -80.0 dBm. Based on the results, the receiver noise floor is calculated by -100 dBm on average.

High performance X-band power amplifier MMIC using a 0.25 ㎛ GaN HEMT technology (0.25 ㎛ GaN HEMT 기술을 이용한 우수한 성능의 X-대역 전력 증폭기)

  • Lee, Bok-Hyung;Park, Byung-Jun;Choi, Sun-Youl;Lim, Byeong-Ok;Go, Joo-Seoc;Kim, Sung-Chan
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.425-430
    • /
    • 2019
  • This work describes the design and characterization of a X-band power amplifier (PA) monolithic microwave integrated circuit (MMIC) using a $0.25{\mu}m$ gate length gallium nitride (GaN) high electron mobility transistor (HEMT) technology. The developed X-band power amplifier MMIC has small signal gain of over 22.7 dB and saturated output power of 43.02 dBm (20.04 W) over the entire band of 9 to 10 GHz. Maximum saturated output power is a 43.84 dBm (24.21 W) at 9.5 GHz. Its power added efficiency (PAE) is 41.0~51.24% and the chip dimensions are $3.7mm{\times}2.3mm$, generating the output power density of $2.84W/mm^2$. The developed GaN power amplifier MMIC is expected to be applied in a variety of X-band radar applications.

The Design of K-band Up converter with the Excellent IMD3 Performance (3차 혼변조 왜곡 특성이 우수한 K-band 상향변환기 설계)

  • 정인기;이영철
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.5
    • /
    • pp.1120-1128
    • /
    • 2004
  • In this paper, we has designed and implemented Up-converter for K-band with high IMD3 performance using balanced power amplifier. It is consisted of PA module and, Local Oscillator module with reject Filter, mixer module and If block, and Up-converter has a local loop path to decide whether it operate or not and has the sensing port to inspect output power level. According to the power budget of designed Up-converter, K-band balanced power amplifier was fabricated by commercial MMIC. Measurement results of up-converter show about 40dB Gain, PldB of 29dBm and OIP3 was 38.25dBm, that is good performance compared to power budgets. We has adjusted gate voltage of MMIC to control more than 30 dB gain. This up-converter was used in transceiver for PTP and PTMP, and applied to digital communication system that use QAM and QPSK modulation.