• Title/Summary/Keyword: BM-MSC

Search Result 17, Processing Time 0.031 seconds

Derivation of MSC Like-Cell Population from Feeder Free Cultured hESC and Their Proteomic Analysis for Comparison Study with BM-MSC (Feeder Free 상태에서 배양된 인간 배아 줄기세포를 이용한 중간엽 줄기세포 분화 및 단백체학을 이용한 골수 유래 중간엽 줄기세포와의 비교)

  • Park, Soon-Jung;Jeon, Young-Joo;Kim, Ju-Mi;Shin, Jeong-Min;Chae, Jung-Il;Chung, Hyung-Min
    • Reproductive and Developmental Biology
    • /
    • v.34 no.3
    • /
    • pp.143-151
    • /
    • 2010
  • Pluripotency of human embryonic stem cell (hESC) is one of the most valuable ability of hESCs for applying cell therapy field, but also showing side effect, for example teratoma formation. When transplant multipotent stem cell, such as mesnchymal stem cell (MSC) which retains similar differentiation ability, they do not form teratoma in vivo, but there exist limitation of cellular source supply. Accordingly, differentiation of hESC into MSC will be promising cellular source with strong points of both hESC and MSC line. In this study, we described the derivation of MSC like cell population from feeder free cultured hESC (hESC-MSC) using direct differentiation system. Cells population, hESC-MSC and bone marrow derived MSC (BM-MSC) retained similar characteristics in vitro, such as morphology, MSC specific marker expression and differentiation capacity. At the point of differentiation of both cell populations, differentiation rate was slower in hESC-MSC than BM-MSC. As these reason, to verify differentially expressed molecular condition of both cell population which bring out different differentiation rate, we compare the molecular condition of hESC-MSC and BM-MSC using 2-D proteomic analysis tool. In the proteomic analysis, we identified 49 differentially expressed proteins in hESC-MSC and BM-MSC, and they involved in different biological process such as positive regulation of molecular function, biological process, cellular metabolic process, nitrogen compound metabolic process, macromolecule metabolic process, metabolic process, molecular function, and positive regulation of molecular function and regulation of ubiquitin protein ligase activity during mitotic cell cycle, cellular response to stress, and RNA localization. As the related function of differentially expressed proteins, we sought to these proteins were key regulators which contribute to their differentiation rate, developmental process and cell proliferation. Our results suggest that the expressions of these proteins between the hESC-MSC and BM-MSC, could give to us further evidence for hESC differentiation into the mesenchymal stem cell is associated with a differentiation factor. As the initial step to understand fundamental difference of hESC-MSC and BM-MSC, we sought to investigate different protein expression profile. And the grafting of hESC differentiation into MSC and their comparative proteomic analysis will be positively contribute to cell therapy without cellular source limitation, also with exact background of their molecular condition.

A Number of Bone Marrow Mesenchymal Stem Cells but Neither Phenotype Nor Differentiation Capacities Changes with Age of Rats

  • Tokalov, Sergey V.;Gruner, Susanne;Schindler, Sebastian;Iagunov, Alexey S.;Baumann, Michael;Abolmaali, Nasreddin D.
    • Molecules and Cells
    • /
    • v.24 no.2
    • /
    • pp.255-260
    • /
    • 2007
  • Bone marrow (BM) derived mesenchymal stem cells (MSC) are pluripotent cells which can differentiate into osteogenic, adipogenic and other lineages. In spite of the broad interest, the information about the changes in BM cell composition, in particularly about the variation of MSC number and their properties in relation to the age of the donor is still controversial. The aim of this study was to investigate the age associated changes in variations of BM cell composition, phenotype and differentiation capacities of MSC using a rat model. Cell populations were characterized by flow cytometry using light scattering parameters, DNA content and a set of monoclonal antibodies. Single cell analysis was performed by conventional fluorescent microscopy. In vitro culture of MSC was established and their phenotype and capability for in vitro differentiation into osteogenic and adipogenic cells was shown. Age related changes in tibiae and femurs, amount of BM tissue, BM cell composition, proportions of separated MSC and yield of MSC in 2 weeks of in vitro culture were found. At the same time, neither change in phenotype no in differentiation capacities of MSC was registered. Age-related changes of the number of MSC should be taken into account whenever MSC are intended to be used for investigations.

Functional expression of TREK1 channel in human bone marrow and human umbilical cord vein-derived mesenchymal stem cells (사람의 골수와 제대정맥에서 유래된 중간엽 줄기세포에서 TREK1 통로의 기능적 발현)

  • Park, Kyoung Sun;Kim, Yangmi
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.1964-1971
    • /
    • 2015
  • Human bone marrow or human umbilical cord vein derived-mesenchymal stem cells (hBM-MSCs or hUC-MSCs) have known as a potentially useful cell type for clinical therapeutic applications. We investigated two-pore domain potassium (K2P) channels in these cells. K2P channels play a major role in setting the resting membrane potential in many cell types. Among them, TREK1 is targets of hydrogen, hypoxia, polyunsaturated fatty acids, antidepressant, and neurotransmitters. We investigated whether hBM-MSCs and hUC-MSCs express functional TREK1 channel using RT-PCR analysis and patch clamp technique. Potassium channel with a single channel conductance of 100 pS was found in hUC-MSCs and BM-MSCs and the channel was activated by membrane stretch (-5 mmHg ~ -15 mmHg), arachidonic acid ($10{\mu}M$) and intracellular acidosis (pH 6.0). These electrophysiological properties were similar to those of TREK1. Our results suggest that TREK1 is functionally present in hBM-MSCs and hUC-MSCs, where they contribute to its resting membrane potential.

Comparison of MicroRNA Expression in Placenta-derived Mesenchymal Stem Cells and Bone Marrow-derived Stem Cells (태반유래 줄기세포와 골수유래 줄기세포에서의 마이크로RNA 발현비교)

  • Kim, Soo Hwan
    • Journal of Life Science
    • /
    • v.24 no.11
    • /
    • pp.1238-1243
    • /
    • 2014
  • Mesenchymal stem cells (MSCs) have been widely used as cellular therapeutic agents. They have their own characteristic stemness, and thus, they can be used in the treatment of many chronic diseases and in anticancer therapy. MSC therapy has many advantages over chemical therapy. MSC therapy is based on self or homogeneous origin; as such, it is expected to be effective in the treatment of various diseases. In addition, microRNAs in particular have been studied for their structure and function, and they are also expected to prove effective for use as therapeutic agents in cancer or chronic diseases. MicroRNAs are largely associated with metabolism and homeostasis. Therefore, over- or under-expression of microRNAs leads to chronic diseases. Conversely, effective control of the expression of specific microRNAs reduces the risk of many chronic diseases. However, there have been no reports thus far on the synergistic effects of MSCs and microRNAs. Therefore, in this study, we examined the relationship between MSCs and microRNAs using placenta-derived MSCs (PDSCs), bone marrow-derived MSCs (BM-MSCs), and fibroblast (WI-38) cells. We studied the expression of some microRNAs in MSCs and compared the expression in each cell line and cell passage. As a result, we found that the expression of microRNA-34a was higher in PDSCs than in BM-MSCs and that the expression of microRNA-27a, 33a, 33b, and 211 was higher in BM-MSCs than in PDSCs. Therefore, we expect that each MSC line will be used as cell therapy, considering its expressed functional microRNA.

Extracts from Gracilaria vermiculophylla Prevent Cellular Senescence and Improve Differentiation Potential in Replicatively Senescent Human Bone Marrow Mesenchymal Stem Cells (홍조류인 Gracilaria vermiculophylla 추출물에 의한 노화 골수유래 중간엽줄기세포의 항노화 및 분화능력 개선 효과)

  • Jeong, Sin-Gu;Cho, Tae Oh;Cho, Goang-Won
    • Journal of Life Science
    • /
    • v.28 no.9
    • /
    • pp.1042-1047
    • /
    • 2018
  • The red algae Gracilaria vermiculophylla is widespread on seashores worldwide and has been used as food in Asian countries. Previous studies have reported that extracts of Gracilaria red algae have beneficial anti-oxidant and anti-inflammatory effects. The present study examined the anti-senescence effects of Gracilaria vermiculophylla extracts (GV-Ex) in replicatively senescent human bone marrow mesenchymal stem cells (hBM-MSCs). GV-Ex pretreatment improved the cellular viability of hBM-MSCs that had been injured by oxidative stress. These effects of GV-Ex were confirmed by MTT assay and immunoblot analysis using the apoptotic proteins p53 and cleaved caspase-3. The reactive oxygen species (ROS) levels were examined in long-term cultured Passages 17 (P-17) mesenchymal stem cells (MSC) and compared to P-7 MSC. The ROS accumulation was greater in the P-17 than in the P-7. However, these increased ROS levels in the P-17 were decreased significantly after treatment with GV-Ex, and restoration of the levels of the anti-oxidant enzymes SOD1, SOD2, and CAT was also observed under these conditions. In addition, P-17 hBM-MSC treated with GV-Ex had decreased levels of the senescence proteins p53, p21, and p16. The results show that the ability of P-17 hBM-MSC to differentiate into osteocytes and adipocytes was improved by GV-Ex treatment, suggesting that GV-Ex ameliorates the functional decline of senescent stem cells.

Characterization of multipotent mesenchymal stem cells isolated from adipose tissue and bone marrow in pigs (돼지 지방 조직 및 골수 유래 성체줄기세포의 성상분석과 다능성에 관한 연구)

  • Lee, Ah-Young;Choe, Gyeong-Im;Nah, Jin-Ju;So, ByungJae;Lee, Kyung-Woo;Chang, Ki-Yoon;Song, Jae-Young;Cha, Sang-Ho
    • Korean Journal of Veterinary Research
    • /
    • v.53 no.1
    • /
    • pp.37-42
    • /
    • 2013
  • Mesenchymal stem cells (MSCs) have ability to differentiate into multi-lineage cells, which confer a great promise for regenerative medicine to the cells. The aim of this study was to establish a method for isolation and characterization of adipose tissue-derived MSC (pAD-MSC) and bone marrow-derived MSC (pBM-MSC) in pigs. Isolated cells from all tissues were positive for CD29, CD44, CD90 and CD105, but negative for hematopoietic stem cell associated markers, CD45. In addition, the cells expressed the transcription factors, such as Oct4, Sox2, and Nanog by RT-PCR. pAD-MSC and pBM-MSC at early passage successfully differentiated into chondrocytes, osteocytes and adipocytes. Collectively, pig AD-MSC and BM-MSC with multipotency were optimized in our study.

15-Hydroxyprostaglandin Dehydrogenase Is Associated with the Troglitazone-Induced Promotion of Adipocyte Differentiation in Human Bone Marrow Mesenchymal Stem Cells

  • Noh, Min-Soo;Lee, Soo-Hwan
    • Biomolecules & Therapeutics
    • /
    • v.18 no.1
    • /
    • pp.16-23
    • /
    • 2010
  • Adipocyte differentiation in human bone marrow mesenchymal stem cells (hBM-MSCs) is not as efficient as that in murine pre-adipocytes when induced by adipogenic agents including insulin, dexamethasone, and 3-isobutyl-1-methylxanthine (IDX condition). Therefore, the promotion of adipocyte differentiation in hBM-MSCs has been used as a cell culture model to evaluate insulin sensitivity for anti-diabetic drugs. In hBM-MSCs, $PPAR{\gamma}$ agonists or sulfonylurea anti-diabetic drugs have been added to IDX conditions to promote adipocyte differentiation. Here we show that troglitazone, a peroxisome proliferator-activated receptor-gamma ($PPAR{\gamma}$) agonist, significantly reduced the levels of anti-adipogenic $PGE_2$ in IDX-conditioned hBM-MSC culture supernatants when compared to $PGE_2$ levels in the absence of $PPAR{\gamma}$ agonist. However, there was no difference in the mRNA levels of cyclooxygenases (COXs) and the activities of COXs and prostaglandin synthases during adipocyte differentiation in hBM-MSCs with or without troglitazone. In hBM-MSCs, troglitazone significantly increased the mRNA level of 15-hydroxyprostaglandin dehydrogenase (HPGD) which can act to decrease $PGE_2$ levels in culture. These results suggest that the role of $PPAR{\gamma}$ activation in promoting adipocyte differentiation in hBM-MSCs is to reduce anti-adipogenic $PGE_2$ levels through the up-regulation of HPGD expression.

Defective Self-Renewal and Differentiation of GBA-Deficient Neural Stem Cells Can Be Restored By Macrophage Colony-Stimulating Factor

  • Lee, Hyun;Bae, Jae-sung;Jin, Hee Kyung
    • Molecules and Cells
    • /
    • v.38 no.9
    • /
    • pp.806-813
    • /
    • 2015
  • Gaucher disease (GD) is an autosomal recessive lysosomal storage disorder caused by mutations in the glucocerebrosidase gene (GBA), which encodes the lysosomal enzyme glucosylceramidase (GCase). Deficiency in GCase leads to characteristic visceral pathology and lethal neurological manifestations in some patients. Investigations into neurogenesis have suggested that neurodegenerative disorders, such as GD, could be overcome or at least ameliorated by the generation of new neurons. Bone marrowderived mesenchymal stem cells (BM-MSCs) are potential candidates for use in the treatment of neurodegenerative disorders because of their ability to promote neurogenesis. Our objective was to examine the mechanism of neurogenesis by BM-MSCs in GD. We found that neural stem cells (NSCs) derived from a neuronopathic GD model exhibited decreased ability for self-renewal and neuronal differentiation. Co-culture of GBA-deficient NSCs with BM-MSCs resulted in an enhanced capacity for self-renewal, and an increased ability for differentiation into neurons or oligodendrocytes. Enhanced proliferation and neuronal differentiation of GBA-deficient NSCs was associated with elevated release of macrophage colony-stimulating factor (M-CSF) from BM-MSCs. Our findings suggest that soluble M-CSF derived from BM-MSCs can modulate GBA-deficient NSCs, resulting in their improved proliferation and neuronal differentiation.

A Comparison of ROCK Inhibitors on Human Bone Marrow-Derived Mesenchymal Stem Cell Differentiation into Neuron-Like Cells

  • Lee, Hyun-Sun;Kim, Kwang-Sei;O, Eun-Ju;Joe, Young-Ae
    • Biomolecules & Therapeutics
    • /
    • v.18 no.4
    • /
    • pp.386-395
    • /
    • 2010
  • Bone marrow-derived mesenchymal stem cells (BM-MSC) are a multipotent cell population that can differentiate into neuron-like cells. Previously it has been reported that murine BM-MSC can differentiate into neuron-like cells by co-treatment with a Rho-associated kinase (ROCK) inhibitor -Y27632 and $CoCl_2$. In this study, we compared several ROCK inhibitors for the ability to induce human BM-MSCs to differentiate into neuron-like cells in the presence of $CoCl_2$. Y27632 with high specificity for ROCK at 1-30 ${\mu}M$ was best at inducing neuronal differentiation of MSCs. Compared to HA1077 and H1152, which also effectively induced morphological change into neuron-like cells, Y27632 showed less toxicity even at 100 ${\mu}M$, and resulted in longer multiple branching processes at a wide range of concentrations at 6 h and 72 h post-induction. H89, however, which has less specificity by inhibition of protein kinase A, S6 kinase 1 and MSK1 with similar or greater potency, was less effective at inducing neuronal differentiation of MSCs. Simvastatin, which can inhibit Rho, Ras, and Rac by blocking the synthesis of isoprenoid intermediates, showed little activity for inducing morphological changes of MSCs into neuron-like cells. Accordingly, the expression patterns for neuronal cell markers,including ${\beta}$-tubulin III, neuron-specific enolase, neurofilament, and microtubule-associated protein, were consistent with the pattern of the morphological changes. The data suggest that the ROCK inhibitors with higher specificity are more effective at inducing neuronal differentiation of MSCs.

Immune inflammatory modulation as a potential therapeutic strategy of stem cell therapy for ALS and neurodegenerative diseases

  • Kim, Seung Hyun;Oh, Ki-Wook;Jin, Hee Kyung;Bae, Jae-Sung
    • BMB Reports
    • /
    • v.51 no.11
    • /
    • pp.545-546
    • /
    • 2018
  • With emerging evidence on the importance of non-cell autonomous toxicity in neurodegenerative diseases, therapeutic strategies targeting modulation of key immune cells. including microglia and Treg cells, have been designed for treatment of ALS and other neurodegenerative diseases. Strategy switching the patient's environment from a pro-inflammatory toxic to an anti-inflammatory, and neuroprotective condition, could be potential therapy for neurodegenerative diseases. Mesenchymal stem cells (MSCs) regulate innate and adaptive immune cells, through release of soluble factors such as $TGF-{\beta}$ and elevation of regulatory T cells (Tregs) and T helper-2 cells (Th2 cells), would play important roles, in the neuroprotective effect on motor neuronal cell death mechanisms in ALS. Single cycle of repeated intrathecal injections of BM-MSCs demonstrated a clinical benefit lasting at least 6 months, with safety, in ALS patients. Cytokine profiles of CSF provided evidence that BM-MSCs, have a role in switching from pro-inflammatory to anti-inflammatory conditions. Inverse correlation of $TGF-{\beta}1$ and MCP-1 levels, could be a potential biomarker to responsiveness. Thus, additional cycles of BM-MSC treatment are required, to confirm long-term efficacy and safety.