• Title/Summary/Keyword: BK21 Plus

Search Result 928, Processing Time 0.024 seconds

Mass-Based Metabolomic Analysis of Lactobacillus sakei and Its Growth Media at Different Growth Phases

  • Lee, Sang Bong;Rhee, Young Kyoung;Gu, Eun-Ji;Kim, Dong-Wook;Jang, Gwang-Ju;Song, Seong-Hwa;Lee, Jae-In;Kim, Bo-Min;Lee, Hyeon-Jeong;Hong, Hee-Do;Cho, Chang-Won;Kim, Hyun-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.5
    • /
    • pp.925-932
    • /
    • 2017
  • Changes in the metabolite profiles of Lactobacillus sakei and its growth media, based on different culture times (0, 6, 12, and 24 h), were investigated using gas chromatography-mass spectrometry (MS) and liquid chromatography-MS with partial least squares discriminant analysis, in order to understand the growth characteristics of this organism. Cell and media samples of L. sakei were significantly separated on PLS-DA score plots. Cell and media metabolites, including sugars, amino acids, and organic acids, were identified as major metabolites contributing to the difference among samples. The alteration of cell and media metabolites during cell growth was strongly associated with energy production. Glucose, fructose, carnitine, tryptophan, and malic acid in the growth media were used as primary energy sources during the initial growth stage, but after the exhaustion of these energy sources, L. sakei could utilize other sources such as trehalose, citric acid, and lysine in the cell. The change in the levels of these energy sources was inversely similar to the energy production, especially ATP. Based on these identified metabolites, the metabolomic pathway associated with energy production through lactic acid fermentation was proposed. Although further studies are required, these results suggest that MS-based metabolomic analysis might be a useful tool for understanding the growth characteristics of L. sakei, the most important bacterium associated with meat and vegetable fermentation, during growth.

Fiber-optic Temperature Sensor Using a Silicone Oil and an OTDR (OTDR을 이용한 실리콘 오일 기반의 광섬유 온도 센서)

  • Jang, Jae Seok;Yoo, Wook Jae;Shin, Sang Hun;Lee, Dong Eun;Kim, Mingeon;Kim, Hye Jin;Song, Young Beom;Jang, Kyoung Won;Cho, Seunghyun;Lee, Bongsoo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.11
    • /
    • pp.1592-1597
    • /
    • 2015
  • In this study, we developed a fiber-optic temperature sensor (FOTS) based on a silicone oil and an optical time domain reflectometer (OTDR) to apply the measurement of a coolant leakage in the nuclear power plant. The sensing probe of the FOTS consists of a silicone oil, a stainless steel cap, a FC terminator, and a single mode optical fiber. Fresnel reflection arising at the interface between the silicone oil and the single mode optical fiber in the sensing probe is changed by varying the refractive index of the silicone oil according to the temperature. Therefore, we measured the optical power of the light signals reflected from the sensing probe. The measurable temperature range of the FOTS using a Cu-coated silica fiber is from $70^{\circ}C$ to $340^{\circ}C$ and the maximum operation temperature of the FOTS is sufficient for usage at the secondary system in the nuclear power plant.

Metabolomic analysis of healthy human urine following administration of glimepiride using a liquid chromatography-tandem mass spectrometry

  • Do, Eun Young;Gwon, Mi-Ri;Kim, Bo Kyung;Ohk, Boram;Lee, Hae Won;Kang, Woo Youl;Seong, Sook Jin;Kim, Hyun-Ju;Yoon, Young-Ran
    • Translational and Clinical Pharmacology
    • /
    • v.25 no.2
    • /
    • pp.67-73
    • /
    • 2017
  • Glimepiride, a third generation sulfonylurea, is an antihyperglycemic agent widely used to treat type 2 diabetes mellitus. In this study, an untargeted urinary metabolomic analysis was performed to identify endogenous metabolites affected by glimepiride administration. Urine samples of twelve healthy male volunteers were collected before and after administration of 2 mg glimepiride. These samples were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS), and then subjected to multivariate data analysis including principal component analysis and orthogonal partial least squares discriminant analysis. Through this metabolomic profiling, we identified several endogenous metabolites such as adenosine 3', 5'-cyclic monophosphate (cAMP), quercetin, tyramine, and urocanic acid, which exhibit significant metabolomic changes between pre- and posturine samples. Among these, cAMP, which is known to be related to insulin secretion, was the most significantly altered metabolite following glimepiride administration. In addition, the pathway analysis showed that purine, tyrosine, and histidine metabolism was affected by pharmacological responses to glimepiride. Together, the results suggest that the pharmacometabolomic approach, based on LC-MS/MS, is useful in understanding the alterations in biochemical pathways associated with glimepiride action.

The Quality Improvement of Emulsion-type Pork Sausages Formulated by Substituting Pork Back fat with Rice Bran Oil

  • Yum, Hyeon-Woong;Seo, Jin-Kyu;Jeong, Jin-Yeon;Kim, Gap-Don;Rahman, M. Shafiur;Yang, Han-Sul
    • Food Science of Animal Resources
    • /
    • v.38 no.1
    • /
    • pp.123-134
    • /
    • 2018
  • The effects of pork back fat (PBF) substitution with various concentrations of rice bran oil (RBO) (50%, 45%, 40% and 35%) on the physicochemical characteristics and sensory attributes of emulsion-type pork sausages were studied. The modified pork sausages were compared with control sausages produced using PBF only. The sausages with RBO had significantly lower (p<0.05) moisture content than the control sausages. Sausages made from PBF substituted with 40% RBO showed the lowest cooking loss. Substitution of PBF with RBO had no significant effect on the emulsion stability of pork sausages. All sausages with RBO showed significantly lower (p<0.05) hardness values than control sausages. Sausages with RBO also had significantly higher values (p<0.05) of unsaturated fatty acid and polyunsaturated to saturated fatty acid contents than the controls. RBO substitution had no effect on the flavor intensity of sausages, but it improved the tenderness and produced a softer texture.

Elemental analysis of the liver, kidney, and intestine tissues from a Hodgson's bat (Myotis formosus tsuensis)

  • Yu, Hee Jeong;Kang, Jung-Hoon;Lee, Seungwoo;Choi, Yu Jung;Oh, Dayoung;Lim, Jong-Deock;Ryu, Doug-Young
    • Korean Journal of Veterinary Research
    • /
    • v.56 no.1
    • /
    • pp.51-52
    • /
    • 2016
  • Hodgson's bats are critically endangered in South Korea. This study analyzed the concentrations of elements in liver, kidney, and intestine tissues from a Hodgson's bat found dead in the wild. The concentrations of essential elements followed the order Fe > Zn > Cu > Mn > Se in the three tissues. Hg was detected at the highest concentrations among the non-essential elements analyzed in the liver and kidney tissues, while As was the most highly concentrated non-essential element in the intestine. To the best of our knowledge, this is the first study of tissue element concentrations in Hodgson's bats.

Biochemical Characterization of Alkaliphilic Cyclodextran Glucanotransferase from an Alkaliphilic Bacterium, Paenibacillus daejeonensis

  • Yang, So-Jin;Ko, Jin-A;Kim, Hae-Soo;Jo, Min-Ho;Lee, Ha-Nul;Park, Bo-Ram;Kim, Young-Min
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.12
    • /
    • pp.2029-2035
    • /
    • 2018
  • Cycloisomaltooligosaccharide glucanotransferase (CITase) was isolated from alkaliphilic Paenibacillus daejeonensis via an amino acid homology search for the reported CITase. The recombinant alkaliphilic CITase (PDCITase) from P. daejeonensis was expressed in an Escherichia coli expression system and purified as a single protein band of 111 kDa. PDCITase showed optimum activity at pH 8.0 and retained 100% of activity within a broad pH range (7.0-11.5) after 18 h, indicating alkaliphilic or alkalistable CITase properties. In addition, PDCITase produced CI-7 to CI-17, CI-18, and CI-19, which are relatively large cycloisomaltooligosaccharides yet to be reported. Therefore, these large cycloisomaltooligosaccharides can be applied to the improvement of water solubility of pharmaceutical biomaterials.

α-Glucosidase inhibitory caged xanthones from the resin of Garcinia hanburyi

  • Jin, Young Min;Kim, Jeong Yoon;Lee, Soo Min;Tan, Xue Fei;Park, Ki Hun
    • Journal of Applied Biological Chemistry
    • /
    • v.62 no.1
    • /
    • pp.81-86
    • /
    • 2019
  • A yellow resin (gamboge) from Garcinia hanburyi has been widely used as folk medicine due to its antibacterial and antitumor activities. We isolated four ${\alpha}$-glucosidase inhibitory compounds from the methanol extract of gamboge. The compounds (1-4) were identified as gambogoic acid (1), moreollic acid (2), gambogic acid (3), and 10-methoxygambogenic acid (4), respectively through spectroscopic data including 2D-NMR and HREIMS. All compounds were examined in the enzyme inhibition assay against ${\alpha}$-glucosidase to identify their inhibitory potencies and kinetic behavior. All compounds (1-4) showed enzyme inhibition against ${\alpha}$-glucosidase, but the activity was significantly affected by the methoxy group on C-10 of ring A and pentenyl pyran moiety of ring D. For example, compound 1 ($IC_{50}=41.4{\mu}M$) bearing pyran ring eight times effective that 4 ($IC_{50}=350.6{\mu}M$) having geranyl group itself. Most active compound was found out to be gambogoic acid (1) which was analyzed most abundant metabolite in gamboge by LC-ESI-MS/MS. In kinetic study, compounds 1 and 2 were proved as noncompetitive inhibitors.

The Study of Anti-inflammatory Effect of Suryeon-hwan Water Extract in RAW 264.7 Cells (대식세포에서 수련환(茱連丸) 물추출물의 항염증작용에 관한 연구)

  • Yoon, Yeo-Hwan;Kim, Sung-Bae;Kang, Ok-Hwa;Mun, Su-Hyun;Seo, Yun-Soo;Yang, Da-Wun;Kang, Da-Hye;Wi, Gyeong;Lim, Jae-Soo;Kim, Ma-Ryong;Kwak, Nam-Won;Kong, Ryong;Kwon, Dong-Yeul
    • The Korea Journal of Herbology
    • /
    • v.29 no.6
    • /
    • pp.125-132
    • /
    • 2014
  • Objectives : Suryeon-hwan (SRH) exhibits potent anti-inflammatory activity with an unknown mechanism. However, there has been a lack of studies regarding the effects of SRH on the inflammatory activities and effector inflammatory disease mechanism about macrophage before is not known. So, the investigation focused on whether SRH inhibited nitric oxide (NO) and prostaglandin $E_2$ ($PGE_2$) productions, as well as the expressions of inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin-6 (IL-6), and mitogen-activated protein kinases (MAPKs) in LPS-stimulated RAW 264.7 cells. Methods : Cells were treated with 200 ng/mL of LPS 30 min prior to the addition of SRH. Cell viability was measured by MTS assay. The production of nitric oxide (NO) was determined by reacting cultured medium with Griess reagent. The content of level of cytokines (PGE, IL-6) in media from LPS-stimulated Raw 264.7 cells was analyed by ELISA kit. The expression of COX-2, iNOS and MAPKs was investigated by Western blot, RT-PCR. Results : We found that SRH inhibited LPS-induced NO, $PGE_2$ and IL-6 productions as well as the expressions of iNOS and COX-2. Furthermore, SRH suppressed the LPS-induced phosphorylation of MAPK and extracellular signal-regulated kinase 1/2 (ERK 1/2) activation. Conclusions : These results suggest that SRH has inhibitory effects on LPS-induced $PGE_2$, NO, and IL-6 production, as well as the expressions of iNOS and COX-2 in the murine macrophage. These inhibitory effects occur through blockades on the phosphorylation of MAPKs following activation.

Characterization of a Glutamate Decarboxylase (GAD) from Enterococcus avium M5 Isolated from Jeotgal, a Korean Fermented Seafood

  • Lee, Kang Wook;Shim, Jae Min;Yao, Zhuang;Kim, Jeong A;Kim, Hyun-Jin;Kim, Jeong Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.7
    • /
    • pp.1216-1222
    • /
    • 2017
  • To develop starters for the production of functional foods or materials, lactic acid bacteria producing ${\gamma}-aminobutyric$ acid (GABA) were screened from jeotgals, Korean fermented seafoods. One isolate producing a high amount of GABA from monosodium $\text\tiny{L}$-glutamate (MSG) was identified as Enterococcus avium by 16S rRNA gene sequencing. E. avium M5 produced $18.47{\pm}1.26mg/ml$ GABA when incubated for 48 h at $37^{\circ}C$ in MRS broth with MSG (3% (w/v)). A gadB gene encoding glutamate decarboxylase (GAD) was cloned and overexpressed in E. coli BL21 (DE3) using the pET26b (+) expression vector. Recombinant GAD was purified through a Ni-NTA column and the size was estimated to be 53 kDa by SDS-PAGE. Maximum GAD activity was observed at pH 4.5 and $55^{\circ}C$and the activity was dependent on pyridoxal 5'-phosphate. The $K_m$ and $V_{max}$ values of GAD were $3.26{\pm}0.21mM$ and $0.0120{\pm}0.0001mM/min$, respectively, when MSG was used as a substrate. Enterococcus avium M5 secretes a lot of GABA when grown on MRS with MSG, and the strain is useful for the production of fermented foods containing a high amount of GABA.