• 제목/요약/키워드: BK channel

검색결과 80건 처리시간 0.028초

Expression of Ion Channels in Perivascular Stem Cells derived from Human Umbilical Cords

  • Kim, Eunbi;Park, Won Sun;Hong, Seok-Ho
    • 한국발생생물학회지:발생과생식
    • /
    • 제21권1호
    • /
    • pp.11-18
    • /
    • 2017
  • Potassium channels, the largest group of pore proteins, selectively regulate the flow of potassium ($K^+$) ions across cell membranes. The activity and expression of $K^+$ channels are critical for the maintenance of normal functions in vessels and neurons, and for the regulation of cell differentiation and maturation. However, their role and expression in stem cells have been poorly understood. In this study, we isolated perivascular stem cells (PVCs) from human umbilical cords and investigated the expression patterns of big-conductance $Ca^{2+}$-activated $K^+$ ($BK_{Ca}$) and voltage-dependent $K^+$ ($K_v$) channels using the reverse transcription polymerase chain reaction. We also examined the effect of high glucose (HG, 25 mM) on expression levels of $BK_{Ca}$ and $K_v$ channels in PVCs. $K_{Ca}1.1$, $K_{Ca}{\beta}_3$, $K_v1.3$, $K_v3.2$, and $K_v6.1$ were detected in undifferentiated PVCs. In addition, HG treatment increased the amounts of $BK_{Ca}{\beta}_{3a}$, $BK_{Ca}{\beta}_4$, $K_v1.3$, $K_v1.6$, and $K_v6.1$ transcripts. These results suggested that ion channels may have important functions in the growth and differentiation of PVCs, which could be influenced by HG exposure.

Genome-wide association study identifies positional candidate genes affecting back fat thickness trait in pigs

  • Lee, Jae-Bong;Kang, Ho-Chan;Kim, Eun-Ho;Kim, Yoon-Joo;Yoo, Chae-Kyoung;Choi, Tae-Jeong;Lim, Hyun-Tae
    • 농업과학연구
    • /
    • 제45권4호
    • /
    • pp.707-713
    • /
    • 2018
  • This study was done to search for positional candidate genes associated with the back fat thickness trait using a Genome-Wide Association Study (GWAS) in purebred Yorkshires (N = 1755). Genotype and phenotype analyses were done for 1,642 samples. As a result of the associations with back fat thickness using the Gemma program (ver. 0.93), when the genome-wide suggestive threshold was determined using the Bonferroni method ($p=1.61{\times}10^{-5}$), the single nucleotide polymorphism (SNP) markers with suggestive significance were identified in 1 SNP marker on chromosome 2 (MARC0053928; $p=3.65{\times}10^{-6}$), 2 SNP markers on chromosome 14 (ALGA0083078; $p=7.85{\times}10^{-6}$, INRA0048453; $p=1.27{\times}10^{-5}$), and 1 SNP marker on chromosome 18 (ALGA0120564; $p=1.44{\times}10^{-5}$). We could select positional candidate genes (KCNQ1, DOCK1, LOC106506151, and LOC110257583), located close to the SNP markers. Among these, we identified a potassium voltage-gated channel subfamily Q member gene (KCNQ1) and the dedicator of cytokinesis 1 (DOCK1) gene associated with obesity and Type-2 diabetes. The SNPs and haplotypes of the KCNQ1 and DOCK1 genes can contribute to understanding the genetic structure of back fat thickness. Additionally, it may provide basic data regarding marker assisted selection for a meat quality trait in pigs.

Co-expression of a novel ankyrin-containing protein, rSIAP, can modulate gating kinetics of large-conductance calcium-activated potassium channel from rat brain.

  • Lim, Hyun-Ho;Park, Chul-Seung
    • 한국생물물리학회:학술대회논문집
    • /
    • 한국생물물리학회 2003년도 정기총회 및 학술발표회
    • /
    • pp.45-45
    • /
    • 2003
  • We isolated a novel ankyrin-repeat containing protein, rSIAP (rSlo Interacting Ankyrin-repeat Protein), as an interacting protein to the cytosolic domain of the alpha-subunit of rat large-conductance Ca$\^$2+/-activated K$\^$+/ channel (rSlo) by yeast two-hybrid screening. Affinity pull-down assay showed the direct and specific interaction between rSIAP and rSlo domain. The channel-binding proteins can be classified into several categories according to their functional effects on the channel proteins, i.e. signaling adaptors, scaffolding net, molecular tuners, molecular chaperones, etc. To obtain initial clues on its functional roles, we investigated the cellular localization of rSIAP using immunofluorescent staining. The results showed the possible co-localization of rSlo and rSIAP protein near the plasma membrane, when co-expressed in CHO cells. We then investigated the functional effects of rSIAP on the rSlo channel using electrophysiological means. The co-expression of rSIAP accelerated the activation of rSlo channel. These effects were initiated at the micromolar [Ca$\^$2+/]$\_$i/ and gradually increased as [Ca$\^$2+/]$\_$i/ raised. Interestingly, rSIAP decreased the inactivation kinetics of rSlo channel at micromolar [Ca$\^$2+/]$\_$i/, while the rate was accelerated at sub-micromolar [Ca$\^$2+/]$\_$i/. These results suggest that rSIAP may modulate the activity of native BK$\_$Ca/ channel by altering its gating kinetics depending on [Ca$\^$2+/]$\_$i/. To localize critical regions involved in protein-protein interaction between rSlo and rSIAP, a series of sub-domain constructs were generated. We are currently investigating sub-domain interaction using both of yeast two-hybrid method and in vitro binding assay.

  • PDF

Possible Involvement of $Ca^{2+}$ Activated $K^+$ Channels, SK Channel, in the Quercetin-Induced Vasodilatation

  • Nishida, Seiichiro;Satoh, Hiroyasu
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제13권5호
    • /
    • pp.361-365
    • /
    • 2009
  • Effects of quercetin, a kind of flavonoids, on the vasodilating actions were investigated. Among the mechanisms for quercetin-induced vasodilatation in rat aorta, the involvement with the $Ca^{2+}$ activated $K^+$ ($K_{Ca}$) channel was examined. Pretreatment with NE ($5\;{\mu}M$) or KCl (60 mM) was carried out and then, the modulation by quercetin of the constriction was examined using rat aorta ring strips (3 mm) at $36.5^{\circ}C$. Quercetin (0.1 to $100\;{\mu}M$) relaxed the NE-induced vasoconstrictions in a concentrationdependent manner. NO synthesis (NOS) inhibitor, NG-monomethyl-L-arginine acetate (L-NMMA), at $100\;{\mu}M$ reduced the quercetin ($100\;{\mu}M$)-induced vasodilatation from $97.8{\pm}3.7%$ (n=10) to $78.0{\pm}11.6%$ (n=5, p<0.05). Another NOS inhibitor, L-NG-nitro arginine methyl ester (L-NAME), at $10\;{\mu}M$ also had the similar effect. In the presence of both $100\;{\mu}M$ L-NMMA and $10\;{\mu}M$ indomethacin, the quercetin-induced vasodilatation was further attenuated by $100\;{\mu}M$ tetraethylammonium (TEA, a $K_{Ca}$ channel inhibitor). Also TEA decreased the quercetin-induced vasodilatation in endothelium-denuded rat aorta. Used other $K_{Ca}$ channel inhibitors, the quercetin-induced vasodilatation was attenuated by $0.3\;{\mu}M$ apamin (a SK channel inhibitor), but not by 30 nM charybdotoxin (a BK and IK channel inhibitor). Quercetin caused a concentration-dependent vasodilatation, due to the endotheliumdependent and -independent actions. Also quercetin contributes to the vasodilatation selectively with SK channel on smooth muscle.

The large-conductance calcium-activated potassium channel holds the key to the conundrum of familial hypokalemic periodic paralysis

  • Kim, June-Bum;Kim, Sung-Jo;Kang, Sun-Yang;Yi, Jin Woong;Kim, Seung-Min
    • Clinical and Experimental Pediatrics
    • /
    • 제57권10호
    • /
    • pp.445-450
    • /
    • 2014
  • Purpose: Familial hypokalemic periodic paralysis (HOKPP) is an autosomal dominant channelopathy characterized by episodic attacks of muscle weakness and hypokalemia. Mutations in the calcium channel gene, CACNA1S, or the sodium channel gene, SCN4A, have been found to be responsible for HOKPP; however, the mechanism that causes hypokalemia remains to be determined. The aim of this study was to improve the understanding of this mechanism by investigating the expression of calcium-activated potassium ($K_{Ca}$) channel genes in HOKPP patients. Methods: We measured the intracellular calcium concentration with fura-2-acetoxymethyl ester in skeletal muscle cells of HOKPP patients and healthy individuals. We examined the mRNA and protein expression of KCa channel genes (KCNMA1, KCNN1, KCNN2, KCNN3, and KCNN4) in both cell types. Results: Patient cells exhibited higher cytosolic calcium levels than normal cells. Quantitative reverse transcription polymerase chain reaction analysis showed that the mRNA levels of the $K_{Ca}$ channel genes did not significantly differ between patient and normal cells. However, western blot analysis showed that protein levels of the KCNMA1 gene, which encodes $K_{Ca}$1.1 channels (also called big potassium channels), were significantly lower in the membrane fraction and higher in the cytosolic fraction of patient cells than normal cells. When patient cells were exposed to 50 mM potassium buffer, which was used to induce depolarization, the altered subcellular distribution of BK channels remained unchanged. Conclusion: These findings suggest a novel mechanism for the development of hypokalemia and paralysis in HOKPP and demonstrate a connection between disease-associated mutations in calcium/sodium channels and pathogenic changes in nonmutant potassium channels.

Testosterone Relaxes Rabbit Seminal Vesicle by Calcium Channel Inhibition

  • Kim, Jong-Kok;Han, Woo-Ha;Lee, Moo-Yeol;Myung, Soon-Chul;Kim, Sae-Chul;Kim, Min-Ky
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제12권2호
    • /
    • pp.73-77
    • /
    • 2008
  • Recent studies have documented that testosterone relaxes several smooth muscles by modulating $K^+$ channel activities. Smooth muscles of seminal vesicles playa fundamental role in ejaculation, which might involve testosterone. This study was aimed to assess the role of testosterone in seminal vesicular motility by studying its effects on contractile agents and on the ion channels of single vesicular myocytes in a rabbit model. The contractile responses of circular smooth muscle strips of rabbit seminal vesicles to norepinephrine ($10{\mu}M$), a high concentration of KCI (70 mM), and testosterone ($10{\mu}M$) were observed. Single vesicular myocytes of rabbit were isolated using proteolytic enzymes including collagenase and papain. Inside-out, attached, and whole-cell configurations were examined using the patch clamp technique. The applications of $10{\mu}M$ norepinephrine or 70 mM KCl induced tonic contractions, and $10{\mu}M$ testosterone (pharmacological concentration) evoked dose-dependent relaxations of these precontracted strips. Various $K^+$ channel blockers, such as tetraethylammonium (TEA; $10{\mu}M$), iberiotoxin ($0.1{\mu}M$), 4-aminopyridine (4-AP, $10{\mu}M$), or glibenclamide ($10{\mu}M$) rarely affected these relaxations. Single channel data (of inside-out and attached configurations) of BK channel activity were also hardly affected by testosterone ($10{\mu}M$). On the other hand, however, testosterone reduced L-type $Ca^{2+}$ currents significantly, and found to induce acute relaxation of seminal vesicular smooth muscle and this was mediated, at least in part, by $Ca^{2+}$ current inhibition in rabbit.

Susceptibility of pentylenetetrazole-induced seizures in mice with Cereblon gene knockout

  • Jeon, Seung-Je;Ham, Jinsil;Park, Chul-Seung;Lee, Boreom
    • BMB Reports
    • /
    • 제53권9호
    • /
    • pp.484-489
    • /
    • 2020
  • Epilepsy is a neurological disorder characterized by unpredictable seizures, which are bursts of electrical activity that temporarily affect the brain. Cereblon (CRBN), a DCAFs (DDB1 and CUL4-associated factors), is a well-established protein associated with human mental retardation. Being a substrate receptor of the cullin-RING E3 ubiquitin ligase (CRL) 4 complex, CRBN mediates ubiquitination of several substrates and conducts multiple biological processes. In the central nervous system, the large-conductance Ca2+-activated K+ (BKCa) channel, which is the substrate of CRBN, is an important regulator of epilepsy. Despite the functional role and importance of CRBN in the brain, direct injection of pentylenetetrazole (PTZ) to induce seizures in CRBN knock-out mice has not been challenged. In this study, we investigated the effect of PTZ in CRBN knock-out mice. Here, we demonstrate that, compared with WT mice, CRBN knock-out mice do not show the intensification of seizures by PTZ induction. Moreover, electroencephalography recordings were also performed in the brains of both WT and CRBN knockout mice to identify the absence of significant differences in the pattern of seizure activities. Consistently, immunoblot analysis for validating the protein level of the CRL4 complex containing CRBN (CRL4Crbn) in the mouse brain was carried out. Taken together, we found that the deficiency of CRBN does not affect PTZ-induced seizure.

$Ag^+-Na^+$이온교환법을 이용한 $1.31/1.55\mu\textrm{m}$ 두파장 방향성 광 결합기의 모델링 및 제작 (Modeling and fabrication of $1.31/1.55\mu\textrm{m}$ coarse WDM optical directional coupler using $Ag^+-Na^+$ ion-exchanged glass)

  • 강동성
    • 한국광학회지
    • /
    • 제11권5호
    • /
    • pp.335-339
    • /
    • 2000
  • 본 논문에서는 2" BK7 유리 기판에 $Ag^+-Na^+$ 이온교환법을 이용한 $1.31/1.55\mu\textrm{m}$ 두파장 방향성 광 결합기를 제작하였다. 제작 및 모델링 조건으로는 이온교환 온도 $340^{\circ}C$, 이온교환 시간 12h, 확산이온농도 0.67[MF]-NaNO3+0.33[MF]-KNO3+1$\times$-3[MF]-AgNO3, 이었으며 굴절율의 분포는 폭 방향으로는 가우시안 함수로, 깊이 방향으로는 에러 함수 분포로 근사화 하였다. 광 결합기를 구성하는 채널 도파로의 폭은 단일 모드 조건으로부터 $4\mu\textrm{m}$이었고 간격은 $8\mu\textrm{m}$이었다. 제작된 소자의 전체 길이는 16mm이었으며 광 결합길이는 12.6mm이었고 $1.31/1.55\mu\textrm{m}$ 두파장에서 각각 18dB이상의 소멸비를 나타내었다.

  • PDF

Cathode에 따른 소형 PEM 연료전지의 성능 변화 (Performance of the Small PEMFC according to Cathode)

  • 이세원;이강인;박민수;주종남
    • 한국수소및신에너지학회논문집
    • /
    • 제19권4호
    • /
    • pp.283-290
    • /
    • 2008
  • In this paper, experiments with an air-breathing proton exchange membrane fuel cell (PEMFC) for mobile devices were carried out according to cathode conditions. These conditions are defined by the cathode flow field plate type (the channel type, the open type) and the cathode surface direction. Single-cell and 6-cell stack were used in the experiments. The experimental results showed that the open-type cathode flow field plate gave a better performance than the small channel type. In the experiments related to the direction of the slits on the cathode flow field plate, the horizontal slit cell was better than the vertical one. With respect to the cathode surface direction, when the cathode surface is placed in the direction normal to the ground, the PEMFC generated more stable power in the mass transport loss region. Since stable power in the mass transport region is closely related to the air supply, computational fluid dynamics (CFD) analysis for air-breathing PEMFC of different cathode surface directions was performed.

Effects of Lemakalim, a Potassium Channel Opener, on the Contractility and Electrical Activity of the Antral Circular Muscle in Guinea-Pig Stomach

  • Kim, Sung-Joon;Jun, Jae-Yeoul;Choi, Youn-Baik;Kim, Ki-Whan;Kim, Woo-Gyeum
    • The Korean Journal of Physiology
    • /
    • 제28권1호
    • /
    • pp.37-50
    • /
    • 1994
  • Synthetic potassium channel openers (KCOs) are agents capable of opening K-channels in excitable cells. These agents are known to have their maximal potency in the smooth muscle tissue, especially in the vascular smooth muscle. Much attention has been focused on the type of K-channel that is responsible for mediating the effects of KCOs. As the KCO-induced changes are antagonized by glibenclamide, an $K_{ATP}$ (ATP-sensitive K-channel) blocker in the pancreatic ${\beta}-cell,\;K_{ATP}$ was suggested to be the channel responsible. However, there also are many results in favor of other types of K-channel $$(maxi-K,\;small\;conductance\;K_{Ca,}\; SK_{ATP}) mediating the effects of KCOs. Effects of lemakalim, (-)enantiomer of cromakalim (BRL 34915), on the spontaneous contractions and slow waves, were investigated in the antral circular muscle of the guinea-pig stomach. Membrane currents and the effects on membrane currents and single channel activities were also measured in single smooth muscle cells and excised membrane patches by using the patch clamp method. Lemakalim induced hyperpolarization and inhibited spontaneous contractions in a dose-dependent manner. These effects were blocked by glibenclamide and low concentrations of tetraethyl ammonium (< mM). Glibenclamide blocked the effect of lemakalim on the membrane potential and slow waves. The mechanoinhibitory effect of lemakalim was blocked by pretreatment with glibenclamide. In a whole ceIl patch clamp condition, lemakalim largely increased outward K currents. These outward K currents were blocked by TEA, glibenclamide and a high concentration of intracelIular EGTA (10 mM). Volatage-gated Ca currents were not affected by lemakalim. In inside-out patch clamp experiments, lemakalim increased the opening frequency of the large conductance $Ca^{2+}-activated$ K channels $(BK_{Ca},\;Maxi-K).$ From these results, it is suggested that lemakalim induces hyperpolarization by opening K-channels which are sensitive to internal Ca and such a hyperpolarization leads to the inhibition of the spontaneous contraction.

  • PDF