• Title/Summary/Keyword: BIRC3

Search Result 8, Processing Time 0.029 seconds

Snail Promotes Cancer Cell Proliferation via Its Interaction with the BIRC3

  • Rho, Seung Bae;Byun, Hyun-Jung;Kim, Boh-Ram;Lee, Chang Hoon
    • Biomolecules & Therapeutics
    • /
    • v.30 no.4
    • /
    • pp.380-388
    • /
    • 2022
  • Snail is implicated in tumour growth and metastasis and is up-regulated in various human tumours. Although the role of Snails in epithelial-mesenchymal transition, which is particularly important in cancer metastasis, is well known, how they regulate tumour growth is poorly described. In this study, the possible molecular mechanisms of Snail in tumour growth were explored. Baculoviral inhibitor of apoptosis protein (IAP) repeat-containing protein 3 (BIRC3), a co-activator of cell proliferation during tumourigenesis, was identified as a Snail-binding protein via a yeast two-hybrid system. Since BIRC3 is important for cell survival, the effect of BIRC3 binding partner Snail on cell survival was investigated in ovarian cancer cell lines. Results revealed that Bax expression was activated, while the expression levels of anti-apoptotic proteins were markedly decreased by small interfering RNA (siRNA) specific for Snail (siSnail). siSnail, the binding partner of siBIRC3, activated the tumour suppressor function of p53 by promoting p53 protein stability. Conversely, BIRC3 could interact with Snail, for this reason, the possibility of BIRC3 involvement in EMT was investigated. BIRC3 overexpression resulted in a decreased expression of the epithelial marker and an increased expression of the mesenchymal markers. siSnail or siBIRC3 reduced the mRNA levels of matrix metalloproteinase (MMP)-2 and MMP-9. These results provide evidence that Snail promotes cell proliferation by interacting with BIRC3 and that BIRC3 might be involved in EMT via binding to Snail in ovarian cancer cells. Therefore, our results suggested the novel relevance of BIRC3, the binding partner of Snail, in ovarian cancer development.

Inhibitors of apoptosis: expression and regulation in the endometrium during the estrous cycle and at the maternal-conceptus interface during pregnancy in pigs

  • Yoo, Inkyu;Jung, Wonchul;Lee, Soohyung;Cheon, Yugyeong;Ka, Hakhyun
    • Animal Bioscience
    • /
    • v.35 no.4
    • /
    • pp.533-543
    • /
    • 2022
  • Objective: Caspase-mediated apoptosis plays a crucial role in the regulation of endometrial and placental function in females. Caspase activity is tightly controlled by members of the inhibitors of apoptosis proteins (IAPs) family. However, the expression and regulation of IAPs at the maternal-conceptus interface has not been studied in pigs. Therefore, we determined the expression of IAP family members baculovirus IAP repeat-containing 1 (BIRC1) to BIRC6 at the maternal-conceptus interface in pigs. Methods: We obtained endometrial tissues from pigs at various stages of the estrous cycle and pregnancy, conceptus tissues during early pregnancy, and chorioallantoic tissues during mid- to late pregnancy and analyzed the expression of IAPs. Furthermore, we determined the effects of the steroid hormones estradiol-17β (E2) and progesterone on the expression of IAPs in endometrial explant tissue cultures. Results: During the estrous cycle, BIRC2 and BIRC5 expression varied cyclically, and during pregnancy, endometrial BIRC1, BIRC2, BIRC3, BIRC4, and BIRC5 expression varied in a stage-specific manner. Conceptus and chorioallantoic tissues also expressed IAPs during pregnancy. The BIRC2 and BIR3 mRNAs were localized to luminal epithelial cells, and BIRC4 proteins to glandular epithelial cells in the endometrium. Exposure of endometrial tissues to E2 increased the expression of BIRC6, while progesterone increased the expression of BIRC1, BIRC4, and BIRC6 in a dose-dependent manner. Conclusion: These results indicated that IAPs were expressed in the endometrium during the estrous cycle and at the maternal-conceptus interface during pregnancy in a stage-specific manner. In addition, steroid hormones were found to be responsible for the expression of some IAPs in pigs. Together, the results suggested that IAPs may play important roles in endometrial and placental functions by regulating caspase action and apoptosis at the maternal-conceptus interface.

Development of Correlation Based Feature Selection Method by Predicting the Markov Blanket for Gene Selection Analysis

  • Adi, Made;Yun, Zhen;Keong, Kwoh-Chee
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2005.09a
    • /
    • pp.183-187
    • /
    • 2005
  • In this paper, we propose a heuristic method to select features using a Two-Phase Markov Blanket-based (TPMB) algorithm. The first phase, filtering phase, of TPMB algorithm works by filtering the obviously redundant features. A non-linear correlation method based on Information theory is used as a metric to measure the redundancy of a feature [1]. In second phase, approximating phase, the Markov Blanket (MB) of a system is estimated by employing the concept of cross entropy to identify the MB. We perform experiments on microarray data and report two popular dataset, AML-ALL [3] and colon tumor [4], in this paper. The experimental results show that the TPMB algorithm can significantly reduce the number of features while maintaining the accuracy of the classifiers.

  • PDF

Identification of Marker Genes Related to Cardiovascular Toxicity of Doxorubicin and Daunorubicin in Human Umbilical Vein Endothelial Cells (HUVECs)

  • Kim, Youn-Jung;Lee, Ha-Eun;Ryu, Jae-Chun
    • Molecular & Cellular Toxicology
    • /
    • v.3 no.4
    • /
    • pp.246-253
    • /
    • 2007
  • Doxorubicin and daunorubicin are excellent chemotherapeutic agents utilized for several types of cancer but the irreversible cardiac damage is the major limitation for its use. The biochemical mechanisms of doxorubicin- and daunorubicin- induced cardiotoxicity remain unclear. There are many reports on toxicity of doxorubicin and doxorubicin in cardiomyocytes, but effects in cardiovascular system by these drugs are almost not reported. In this study, we investigated gene expression profiles in human umbilical vein endothelial cells (HUVECs) to better understand the causes of doxorubicin and doxorubicininduced cardiovascular toxicity and to identify differentially expressed genes (DEGs). Through the clustering analysis of gene expression profiles, we identified 124 up-regulated common genes and 298 down-regulated common genes changed by more than 1.5-fold by all two cardiac toxicants. HUVECs responded to doxorubicin and doxorubicin damage by increasing levels of apoptosis, oxidative stress, EGF and lipid metabolism related genes. By clustering analysis, we identified some genes as potential markers on apoptosis effects of doxorubicin and doxorubicin. Six genes of these, BBC3, APLP1, FAS, TP53INP, BIRC5 and DAPK were the most significantly affected by doxorubicin and doxorubicin. Thus, this study suggests that these differentially expressed genes may play an important role in the cardiovascular toxic effects and have significant potential as novel biomarkers to doxorubicin and doxorubicin exposure.

Ginsenoside Rg3, a promising agent for NSCLC patients in the pandemic: a large-scale data mining and systemic biological analysis

  • Zhenjie Zhuang;Qianying Chen;Xiaoying Zhong;Huiqi Chen;Runjia Yu;Ying Tang
    • Journal of Ginseng Research
    • /
    • v.47 no.2
    • /
    • pp.291-301
    • /
    • 2023
  • Introduction: Non-small cell lung cancer (NSCLC) patients are particularly vulnerable to the Coronavirus Disease-2019 (COVID-19). Currently, no anti-NSCLC/COVID-19 treatment options are available. As ginsenoside Rg3 is beneficial to NSCLC patients and has been identified as an entry inhibitor of the virus, this study aims to explore underlying pharmacological mechanisms of ginsenoside Rg3 for the treatment of NSCLC patients with COVID-19. Methods: Based on a large-scale data mining and systemic biological analysis, this study investigated target genes, biological processes, pharmacological mechanisms, and underlying immune implications of ginsenoside Rg3 for NSCLC patients with COVID-19. Results: An important gene set containing 26 target genes was built. Target genes with significant prognostic value were identified, including baculoviral IAP repeat containing 5 (BIRC5), carbonic anhydrase 9 (CA9), endothelin receptor type B (EDNRB), glucagon receptor (GCGR), interleukin 2 (IL2), peptidyl arginine deiminase 4 (PADI4), and solute carrier organic anion transporter family member 1B1 (SLCO1B1). The expression of target genes was significantly correlated with the infiltration level of macrophages, eosinophils, natural killer cells, and T lymphocytes. Ginsenoside Rg3 may benefit NSCLC patients with COVID-19 by regulating signaling pathways primarily involved in anti-inflammation, immunomodulation, cell cycle, cell fate, carcinogenesis, and hemodynamics. Conclusions: This study provided a comprehensive strategy for drug discovery in NSCLC and COVID-19 based on systemic biology approaches. Ginsenoside Rg3 may be a prospective drug for NSCLC patients with COVID-19. Future studies are needed to determine the value of ginsenoside Rg3 for NSCLC patients with COVID-19.

$In$ $vitro$ development and gene expression of frozen-thawed 8-cell stage mouse embryos following slow freezing or vitrification

  • Shin, Mi-Ra;Choi, Hye-Won;Kim, Myo-Kyung;Lee, Sun-Hee;Lee, Hyoung-Song;Lim, Chun-Kyu
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.38 no.4
    • /
    • pp.203-209
    • /
    • 2011
  • Objective: This study was performed to compare the efficiency of slow freezing and vitrification based on survival, development to blastocysts, and cell numbers of blastocysts. Changes in embryonic gene expression in fresh and frozen-thawed embryos were also examined. Methods: Eight-cell stage embryos were collected from superovulated female BDF1 mice. The collected embryos were randomly divided into three groups. One group was maintained as fresh controls (n=42), one was frozen by slow freezing (n=43), and one was cooled by vitrification (n=43). After thawing or cooling, survival rates, development to blastocyst, and cell numbers and inner cell mass (ICM) cell numbers of blastocysts were compared with those of the control group. The expressions of eight genes ($Rbm3$, $Birc5$, $Sod1$, $Sod2$, $Cirbp$, $Caspase3$, $Trp53$, $Hsp70.1$) were examined by real time-quantitative polymerase chain reaction in the fresh and frozen-thawed embryos. Results: There were no significant differences in the slow freezing and vitrification groups' survival rate after thawing (88.4% vs. 88.4%), development to blastocyst (100% vs. 97.4%), cell numbers ($107.0{\pm}21.0$ vs. $115.0{\pm}19.7$), or ICM cell numbers of blastocysts ($11.3{\pm}5.2$ vs. $11.1{\pm}3.7$). Cell numbers of blastocysts were significantly ($p$ <0.05) lower in the frozen-thawed embryos than the fresh embryos. There were no significant differences in the slow freezing and the vitrification groups' expressions of the eight genes. The expressions of $CirbP$ and $Hsp70.1$ were higher in the frozen-thawed embryos than in the fresh embryos but there were no significant differences. Conclusion: These results suggest that there were no significant differences between embryos that underwent slow freezing and vitrification.

Rapamycin Rescues the Poor Developmental Capacity of Aged Porcine Oocytes

  • Lee, Seung Eun;Kim, Eun Young;Choi, Hyun Yong;Moon, Jeremiah Jiman;Park, Min Jee;Lee, Jun Beom;Jeong, Chang Jin;Park, Se Pill
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.5
    • /
    • pp.635-647
    • /
    • 2014
  • Unfertilized oocytes age inevitably after ovulation, which limits their fertilizable life span and embryonic development. Rapamycin affects mammalian target of rapamycin (mTOR) expression and cytoskeleton reorganization during oocyte meiotic maturation. The goal of this study was to examine the effects of rapamycin treatment on aged porcine oocytes and their in vitro development. Rapamycin treatment of aged oocytes for 24 h (68 h in vitro maturation [IVM]; $44h+10{\mu}M$ rapamycin/24 h, $47.52{\pm}5.68$) or control oocytes (44 h IVM; $42.14{\pm}4.40$) significantly increased the development rate and total cell number compared with untreated aged oocytes (68 h IVM, $22.04{\pm}5.68$) (p<0.05). Rapamycin treatment of aged IVM oocytes for 24 h also rescued aberrant spindle organization and chromosomal misalignment, blocked the decrease in the level of phosphorylated-p44/42 mitogen-activated protein kinase (MAPK), and increased the mRNA expression of cytoplasmic maturation factor genes (MOS, BMP15, GDF9, and CCNB1) compared with untreated, 24 h-aged IVM oocytes (p<0.05). Furthermore, rapamycin treatment of aged oocytes decreased reactive oxygen species (ROS) activity and DNA fragmentation (p<0.05), and downregulated the mRNA expression of mTOR compared with control or untreated aged oocytes. By contrast, rapamycin treatment of aged oocytes increased mitochondrial localization (p<0.05) and upregulated the mRNA expression of autophagy (BECN1, ATG7, MAP1LC3B, ATG12, GABARAP, and GABARAPL1), anti-apoptosis (BCL2L1 and BIRC5; p<0.05), and development (NANOG and SOX2; p<0.05) genes, but it did not affect the mRNA expression of pro-apoptosis genes (FAS and CASP3) compared with the control. This study demonstrates that rapamycin treatment can rescue the poor developmental capacity of aged porcine oocytes.

RUNX1-Survivin Axis Is a Novel Therapeutic Target for Malignant Rhabdoid Tumors

  • Masamitsu, Mikami;Tatsuya, Masuda;Takuya, Kanatani;Mina, Noura;Katsutsugu, Umeda;Hidefumi, Hiramatsu;Hirohito, Kubota;Tomoo, Daifu;Atsushi, Iwai;Etsuko Yamamoto, Hattori;Kana, Furuichi;Saho, Takasaki;Sunao, Tanaka;Yasuzumi, Matsui;Hidemasa, Matsuo;Masahiro, Hirata;Tatsuki R., Kataoka;Tatsutoshi, Nakahata;Yasumichi, Kuwahara;Tomoko, Iehara;Hajime, Hosoi;Yoichi, Imai;Junko, Takita;Hiroshi, Sugiyama;Souichi, Adachi;Yasuhiko, Kamikubo
    • Molecules and Cells
    • /
    • v.45 no.12
    • /
    • pp.886-895
    • /
    • 2022
  • Malignant rhabdoid tumor (MRT) is a highly aggressive pediatric malignancy with no effective therapy. Therefore, it is necessary to identify a target for the development of novel molecule-targeting therapeutic agents. In this study, we report the importance of the runt-related transcription factor 1 (RUNX1) and RUNX1-Baculoviral IAP (inhibitor of apoptosis) Repeat-Containing 5 (BIRC5/survivin) axis in the proliferation of MRT cells, as it can be used as an ideal target for anti-tumor strategies. The mechanism of this reaction can be explained by the interaction of RUNX1 with the RUNX1-binding DNA sequence located in the survivin promoter and its positive regulation. Specific knockdown of RUNX1 led to decreased expression of survivin, which subsequently suppressed the proliferation of MRT cells in vitro and in vivo. We also found that our novel RUNX inhibitor, Chb-M, which switches off RUNX1 using alkylating agent-conjugated pyrrole-imidazole polyamides designed to specifically bind to consensus RUNX-binding sequences (5'-TGTGGT-3'), inhibited survivin expression in vivo. Taken together, we identified a novel interaction between RUNX1 and survivin in MRT. Therefore the negative regulation of RUNX1 activity may be a novel strategy for MRT treatment.