DOI QR코드

DOI QR Code

RUNX1-Survivin Axis Is a Novel Therapeutic Target for Malignant Rhabdoid Tumors

  • Masamitsu, Mikami (Department of Pediatrics, Graduate School of Medicine, Kyoto University) ;
  • Tatsuya, Masuda (Department of Human Health Sciences, Graduate School of Medicine, Kyoto University) ;
  • Takuya, Kanatani (Department of Human Health Sciences, Graduate School of Medicine, Kyoto University) ;
  • Mina, Noura (Department of Human Health Sciences, Graduate School of Medicine, Kyoto University) ;
  • Katsutsugu, Umeda (Department of Pediatrics, Graduate School of Medicine, Kyoto University) ;
  • Hidefumi, Hiramatsu (Department of Pediatrics, Graduate School of Medicine, Kyoto University) ;
  • Hirohito, Kubota (Department of Pediatrics, Graduate School of Medicine, Kyoto University) ;
  • Tomoo, Daifu (Department of Pediatrics, Graduate School of Medicine, Kyoto University) ;
  • Atsushi, Iwai (Department of Pediatrics, Graduate School of Medicine, Kyoto University) ;
  • Etsuko Yamamoto, Hattori (Department of Human Health Sciences, Graduate School of Medicine, Kyoto University) ;
  • Kana, Furuichi (Department of Human Health Sciences, Graduate School of Medicine, Kyoto University) ;
  • Saho, Takasaki (Department of Human Health Sciences, Graduate School of Medicine, Kyoto University) ;
  • Sunao, Tanaka (Department of Human Health Sciences, Graduate School of Medicine, Kyoto University) ;
  • Yasuzumi, Matsui (Department of Human Health Sciences, Graduate School of Medicine, Kyoto University) ;
  • Hidemasa, Matsuo (Department of Human Health Sciences, Graduate School of Medicine, Kyoto University) ;
  • Masahiro, Hirata (Department of Diagnostic Pathology, Kyoto University Hospital) ;
  • Tatsuki R., Kataoka (Department of Diagnostic Pathology, Kyoto University Hospital) ;
  • Tatsutoshi, Nakahata (Drug Discovery Technology Development Office, Center for iPS Cell Research and Application (CiRA), Kyoto University) ;
  • Yasumichi, Kuwahara (Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine) ;
  • Tomoko, Iehara (Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine) ;
  • Hajime, Hosoi (Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine) ;
  • Yoichi, Imai (Department of Hematology/Oncology, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo) ;
  • Junko, Takita (Department of Pediatrics, Graduate School of Medicine, Kyoto University) ;
  • Hiroshi, Sugiyama (Department of Chemistry, Graduate School of Science, Kyoto University) ;
  • Souichi, Adachi (Department of Human Health Sciences, Graduate School of Medicine, Kyoto University) ;
  • Yasuhiko, Kamikubo (Department of Human Health Sciences, Graduate School of Medicine, Kyoto University)
  • Received : 2021.11.23
  • Accepted : 2022.08.06
  • Published : 2022.12.31

Abstract

Malignant rhabdoid tumor (MRT) is a highly aggressive pediatric malignancy with no effective therapy. Therefore, it is necessary to identify a target for the development of novel molecule-targeting therapeutic agents. In this study, we report the importance of the runt-related transcription factor 1 (RUNX1) and RUNX1-Baculoviral IAP (inhibitor of apoptosis) Repeat-Containing 5 (BIRC5/survivin) axis in the proliferation of MRT cells, as it can be used as an ideal target for anti-tumor strategies. The mechanism of this reaction can be explained by the interaction of RUNX1 with the RUNX1-binding DNA sequence located in the survivin promoter and its positive regulation. Specific knockdown of RUNX1 led to decreased expression of survivin, which subsequently suppressed the proliferation of MRT cells in vitro and in vivo. We also found that our novel RUNX inhibitor, Chb-M, which switches off RUNX1 using alkylating agent-conjugated pyrrole-imidazole polyamides designed to specifically bind to consensus RUNX-binding sequences (5'-TGTGGT-3'), inhibited survivin expression in vivo. Taken together, we identified a novel interaction between RUNX1 and survivin in MRT. Therefore the negative regulation of RUNX1 activity may be a novel strategy for MRT treatment.

Keywords

Acknowledgement

This research was supported by the Platform Project for Supporting Drug Discovery and Life Science Research (Basis for Supporting Innovative Drug Discovery and Life Science Research [BINDS]; 19am0101101j0003), Basic Science and Platform Technology Program for Innovative Biological Medicine from the Japan Agency for Medical Research and Development (AMED; 15am0301005h0002), Grant from the International Joint Usage/Research Center, the Institute of Medical Science, the University of Tokyo, and a Grant-in-Aid for Scientific Research from KAKENHI (17H03597). We would like to thank Dr. H. Miyoshi (RIKEN BRC) for kindly providing the lentiviral vector encoding CSIV-TRE-RfA-UbC-KT for this study.

References

  1. Adida, C., Crotty, P.L., McGrath, J., Berrebi, D., Diebold, J., and Altieri, D.C. (1998). Developmentally regulated expression of the novel cancer anti-apoptosis gene survivin in human and mouse differentiation. Am. J. Pathol. 152, 43-49.
  2. Bakshi, R., Hassan, M.Q., Pratap, J., Lian, J.B., Montecino, M.A., van Wijnen, A.J., Stein, J.L., Imbalzano, A.N., and Stein, G.S. (2010). The human SWI/SNF complex associates with RUNX1 to control transcription of hematopoietic target genes. J. Cell. Physiol. 225, 569-576. https://doi.org/10.1002/jcp.22240
  3. Bando, T. and Sugiyama, H. (2006). Synthesis and biological properties of sequence-specific DNA-alkylating pyrrole-imidazole polyamides. Acc. Chem. Res. 39, 935-944. https://doi.org/10.1021/ar030287f
  4. Ben-Ami, O., Friedman, D., Leshkowitz, D., Goldenberg, D., Orlovsky, K., Pencovich, N., Lotem, J., Tanay, A., and Groner, Y. (2013). Addiction of t(8;21) and inv(16) acute myeloid leukemia to native RUNX1. Cell Rep. 4, 1131-1143. https://doi.org/10.1016/j.celrep.2013.08.020
  5. Brennan, B., De Salvo, G.L., Orbach, D., De Paoli, A., Kelsey, A., Mudry, P., Francotte, N., Van Noesel, M., Bisogno, G., Casanova, M., et al. (2016). Outcome of extracranial malignant rhabdoid tumours in children registered in the European Paediatric Soft Tissue Sarcoma Study Group Non-Rhabdomyosarcoma Soft Tissue Sarcoma 2005 Study-EpSSG NRSTS 2005. Eur. J. Cancer 60, 69-82. https://doi.org/10.1016/j.ejca.2016.02.027
  6. Brennan, B., Stiller, C., and Bourdeaut, F. (2013). Extracranial rhabdoid tumours: what we have learned so far and future directions. Lancet Oncol. 14, e329-e336. https://doi.org/10.1016/S1470-2045(13)70088-3
  7. Brennan, B.M., Foot, A.B., Stiller, C., Kelsey, A., Vujanic, G., Grundy, R., Pritchard Jones, K., and United Kingdom Children's Cancer Study Group (UKCCSG) (2004). Where to next with extracranial rhabdoid tumours in children. Eur. J. Cancer 40, 624-626. https://doi.org/10.1016/j.ejca.2003.11.014
  8. Chang, T.L., Ito, K., Ko, T.K., Liu, Q., Salto-Tellez, M., Yeoh, K.G., Fukamachi, H., and Ito, Y. (2010). Claudin-1 has tumor suppressive activity and is a direct target of RUNX3 in gastric epithelial cells. Gastroenterology 138, 255-265. https://doi.org/10.1053/j.gastro.2009.08.044
  9. Daifu, T., Mikami, M., Hiramatsu, H., Iwai, A., Umeda, K., Noura, M., Kubota, H., Masuda, T., Furuichi, K., Takasaki, S., et al. (2021). Suppression of malignant rhabdoid tumors through Chb-M'-mediated RUNX1 inhibition. Pediatr. Blood Cancer 68, e28789.
  10. Goyama, S., Schibler, J., Cunningham, L., Zhang, Y., Rao, Y., Nishimoto, N., Nakagawa, M., Olsson, A., Wunderlich, M., Link, K.A., et al. (2013). Transcription factor RUNX1 promotes survival of acute myeloid leukemia cells. J. Clin. Invest. 123, 3876-3888. https://doi.org/10.1172/JCI68557
  11. Hyde, R.K., Zhao, L., Alemu, L., and Liu, P.P. (2015). Runx1 is required for hematopoietic defects and leukemogenesis in Cbfb-MYH11 knock-in mice. Leukemia 29, 1771-1778. https://doi.org/10.1038/leu.2015.58
  12. Ito, K., Lim, A.C., Salto-Tellez, M., Motoda, L., Osato, M., Chuang, L.S., Lee, C.W., Voon, D.C., Koo, J.K., Wang, H., et al. (2008). RUNX3 attenuates beta-catenin/T cell factors in intestinal tumorigenesis. Cancer Cell 14, 226-237. https://doi.org/10.1016/j.ccr.2008.08.004
  13. Ito, Y., Bae, S.C., and Chuang, L.S. (2015). The RUNX family: developmental regulators in cancer. Nat. Rev. Cancer 15, 81-95. https://doi.org/10.1038/nrc3877
  14. Janes, K.A. (2011). RUNX1 and its understudied role in breast cancer. Cell Cycle 10, 3461-3465.
  15. Kamikubo, Y. (2018). Genetic compensation of RUNX family transcription factors in leukemia. Cancer Sci. 109, 2358-2363. https://doi.org/10.1111/cas.13664
  16. Kamikubo, Y., Zhao, L., Wunderlich, M., Corpora, T., Hyde, R.K., Paul, T.A., Kundu, M., Garrett, L., Compton, S., Huang, G., et al. (2010). Accelerated leukemogenesis by truncated CBF beta-SMMHC defective in high-affinity binding with RUNX1. Cancer Cell 17, 455-468. https://doi.org/10.1016/j.ccr.2010.03.022
  17. Kasof, G.M. and Gomes, B.C. (2001). Livin, a novel inhibitor of apoptosis protein family member. J. Biol. Chem. 276, 3238-3246. https://doi.org/10.1074/jbc.M003670200
  18. Katsumi, Y., Iehara, T., Miyachi, M., Yagyu, S., Tsubai-Shimizu, S., Kikuchi, K., Tamura, S., Kuwahara, Y., Tsuchiya, K., Kuroda, H., et al. (2011). Sensitivity of malignant rhabdoid tumor cell lines to PD 0332991 is inversely correlated with p16 expression. Biochem. Biophys. Res. Commun. 413, 62-68. https://doi.org/10.1016/j.bbrc.2011.08.047
  19. Kuroda, H., Moritake, H., Sawada, K., Kuwahara, Y., Imoto, I., Inazawa, J., and Sugimoto, T. (2005). Establishment of a cell line from a malignant rhabdoid tumor of the liver lacking the function of two tumor suppressor genes, hSNF5/INI1 and p16. Cancer Genet. Cytogenet. 158, 172-179. https://doi.org/10.1016/j.cancergencyto.2004.08.032
  20. Kuwahara, Y., Wei, D., Durand, J., and Weissman, B.E. (2013). SNF5 reexpression in malignant rhabdoid tumors regulates transcription of target genes by recruitment of SWI/SNF complexes and RNAPII to the transcription start site of their promoters. Mol. Cancer Res. 11, 251-260. https://doi.org/10.1158/1541-7786.MCR-12-0390
  21. LaCasse, E.C., Baird, S., Korneluk, R.G., and MacKenzie, A.E. (1998). The inhibitors of apoptosis (IAPs) and their emerging role in cancer. Oncogene 17, 3247-3259. https://doi.org/10.1038/sj/onc/1202569
  22. Lim, M., Zhong, C., Yang, S., Bell, A.M., Cohen, M.B., and Roy-Burman, P. (2010). Runx2 regulates survivin expression in prostate cancer cells. Lab Invest. 90, 222-233.
  23. Minoshima, M., Bando, T., Shinohara, K., and Sugiyama, H. (2009). Molecular design of sequence specific DNA alkylating agents. Nucleic Acids Symp. Ser. (Oxf.) (53), 69-70.
  24. Misawa, A., Hosoi, H., Imoto, I., Iehara, T., Sugimoto, T., and Inazawa, J. (2004). Translocation (1;22)(p36;q11.2) with concurrent del(22)(q11.2) resulted in homozygous deletion of SNF5/INI1 in a newly established cell line derived from extrarenal rhabdoid tumor. J. Hum. Genet. 49, 586-589. https://doi.org/10.1007/s10038-004-0191-y
  25. Mitsuda, Y., Morita, K., Kashiwazaki, G., Taniguchi, J., Bando, T., Obara, M., Hirata, M., Kataoka, T.R., Muto, M., Kaneda, Y., et al. (2018). RUNX1 positively regulates the ErbB2/HER2 signaling pathway through modulating SOS1 expression in gastric cancer cells. Sci. Rep. 8, 6423.
  26. Morita, K., Maeda, S., Suzuki, K., Kiyose, H., Taniguchi, J., Liu, P.P., Sugiyama, H., Adachi, S., and Kamikubo, Y. (2017b). Paradoxical enhancement of leukemogenesis in acute myeloid leukemia with moderately attenuated RUNX1 expressions. Blood Adv. 1, 1440-1451. https://doi.org/10.1182/bloodadvances.2017007591
  27. Morita, K., Noura, M., Tokushige, C., Maeda, S., Kiyose, H., Kashiwazaki, G., Taniguchi, J., Bando, T., Yoshida, K., Ozaki, T., et al. (2017c). Autonomous feedback loop of RUNX1-p53-CBFB in acute myeloid leukemia cells. Sci. Rep. 7, 16604.
  28. Morita, K., Suzuki, K., Maeda, S., Matsuo, A., Mitsuda, Y., Tokushige, C., Kashiwazaki, G., Taniguchi, J., Maeda, R., Noura, M., et al. (2017a). Genetic regulation of the RUNX transcription factor family has antitumor effects. J. Clin. Invest. 127, 2815-2828. https://doi.org/10.1172/JCI91788
  29. Morita, K., Tokushige, C., Maeda, S., Kiyose, H., Noura, M., Iwai, A., Yamada, M., Kashiwazaki, G., Taniguchi, J., Bando, T., et al. (2018). RUNX transcription factors potentially control E-selectin expression in the bone marrow vascular niche in mice. Blood Adv. 2, 509-515. https://doi.org/10.1182/bloodadvances.2017009324
  30. Nakahara, T., Kita, A., Yamanaka, K., Mori, M., Amino, N., Takeuchi, M., Tominaga, F., Hatakeyama, S., Kinoyama, I., Matsuhisa, A., et al. (2007). YM155, a novel small-molecule survivin suppressant, induces regression of established human hormone-refractory prostate tumor xenografts. Cancer Res. 67, 8014-8021. https://doi.org/10.1158/0008-5472.CAN-07-1343
  31. Rothe, M., Pan, M.G., Henzel, W.J., Ayres, T.M., and Goeddel, D.V. (1995). The TNFR2-TRAF signaling complex contains two novel proteins related to baculoviral inhibitor of apoptosis proteins. Cell 83, 1243-1252.  https://doi.org/10.1016/0092-8674(95)90149-3
  32. Sood, R., Kamikubo, Y., and Liu, P. (2017). Role of RUNX1 in hematological malignancies. Blood 129, 2070-2082. https://doi.org/10.1182/blood-2016-10-687830
  33. Tomlinson, G.E., Breslow, N.E., Dome, J., Guthrie, K.A., Norkool, P., Li, S., Thomas, P.R., Perlman, E., Beckwith, J.B., D'Angio, G.J., et al. (2005). Rhabdoid tumor of the kidney in the National Wilms' Tumor Study: age at diagnosis as a prognostic factor. J. Clin. Oncol. 23, 7641-7645. https://doi.org/10.1200/JCO.2004.00.8110
  34. Wang, X., Sansam, C.G., Thom, C.S., Metzger, D., Evans, J.A., Nguyen, P.T., and Roberts, C.W. (2009). Oncogenesis caused by loss of the SNF5 tumor suppressor is dependent on activity of BRG1, the ATPase of the SWI/SNF chromatin remodeling complex. Cancer Res. 69, 8094-8101. https://doi.org/10.1158/0008-5472.CAN-09-0733
  35. Weissmiller, A.M., Wang, J., Lorey, S.L., Howard, G.C., Martinez, E., Liu, Q., and Tansey, W.P. (2019). Inhibition of MYC by the SMARCB1 tumor suppressor. Nat. Commun. 10, 2014.