• 제목/요약/키워드: BIOMECHANICAL

검색결과 961건 처리시간 0.023초

착지 높이와 지면 형태가 하지 관절에 미치는 영향 (The Effect on the Lower Limbs Joint as the Landing Height and Floor Pattern)

  • 김은경
    • 한국운동역학회지
    • /
    • 제21권4호
    • /
    • pp.437-447
    • /
    • 2011
  • In this study, the lower limbs joints were analyzed for features based on the biomechanical characteristics of landing techniques according to height and landing on the ground type (flats and downhill). In order to achieve the objectives of the study, changes were analyzed in detail contents such as the height and form of the first landing on the ground at different angles of joints, torso and legs, torso and legs of the difference in the range of angular motion of the joint, the maximum angular difference between joints, the lower limbs joints difference between the maximum moment and the difference between COM changes. The subjects in this study do not last six months did not experience joint injuries 10 males in 20 aged were tested. Experimental tools to analyze were the recording and video equipment. Samsung's SCH-650A model camera was used six units, and the 2 GRF-based AMTI were used BP400800 model. 6-unit-camera synchronized with LED (photo cell) and Line Lock system were used. the output from the camera and the ground reaction force based on the data to synchronize A/D Syc. box was used. To calculate the coordinates of three-dimensional space, $1m{\times}3m{\times}2m$ (X, Y, Z axis) to the size of the control points attached to the framework of 36 markers were used, and 29 where the body was taken by attaching a marker to the surface. Two kinds of land condition, 40cm and 60cm in height, and ground conditions in the form of two kinds of flat and downhill slopes ($10^{\circ}$) of the landing operation was performed and each subject's 3 mean two-way RM ANOVA in SPSS 18.0 was used and this time, all the significant level was set at a=.05. Consequently, analyzing the landing technique as land form and land on the ground, the changes of external environmental factors, and the lower limbs joints' function in the evaluation were significantly different from the slopes. Landing of the slop plane were more load on the joints than landing of plane. Especially, knee extensor moment compared to the two kinds of landing, slopes plane were approximately two times higher than flat plane, and it was statistical significance. Most of all not so much range of motion and angular velocity of the shock to reduce stress was important. In the further research, front landing as well as various direction of motion of kinetic, kinetic factors and EMG variables on lower limbs joints of the study in terms of injury-prevention-approach is going to be needed.

High Performance Flexible Inorganic Electronic Systems

  • 박귀일;이건재
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.115-116
    • /
    • 2012
  • The demand for flexible electronic systems such as wearable computers, E-paper, and flexible displays has increased due to their advantages of excellent portability, conformal contact with curved surfaces, light weight, and human friendly interfaces over present rigid electronic systems. This seminar introduces three recent progresses that can extend the application of high performance flexible inorganic electronics. The first part of this seminar will introduce a RRAM with a one transistor-one memristor (1T-1M) arrays on flexible substrates. Flexible memory is an essential part of electronics for data processing, storage, and radio frequency (RF) communication and thus a key element to realize such flexible electronic systems. Although several emerging memory technologies, including resistive switching memory, have been proposed, the cell-to-cell interference issue has to be overcome for flexible and high performance nonvolatile memory applications. The cell-to-cell interference between neighbouring memory cells occurs due to leakage current paths through adjacent low resistance state cells and induces not only unnecessary power consumption but also a misreading problem, a fatal obstacle in memory operation. To fabricate a fully functional flexible memory and prevent these unwanted effects, we integrated high performance flexible single crystal silicon transistors with an amorphous titanium oxide (a-TiO2) based memristor to control the logic state of memory. The $8{\times}8$ NOR type 1T-1M RRAM demonstrated the first random access memory operation on flexible substrates by controlling each memory unit cell independently. The second part of the seminar will discuss the flexible GaN LED on LCP substrates for implantable biosensor. Inorganic III-V light emitting diodes (LEDs) have superior characteristics, such as long-term stability, high efficiency, and strong brightness compared to conventional incandescent lamps and OLED. However, due to the brittle property of bulk inorganic semiconductor materials, III-V LED limits its applications in the field of high performance flexible electronics. This seminar introduces the first flexible and implantable GaN LED on plastic substrates that is transferred from bulk GaN on Si substrates. The superb properties of the flexible GaN thin film in terms of its wide band gap and high efficiency enable the dramatic extension of not only consumer electronic applications but also the biosensing scale. The flexible white LEDs are demonstrated for the feasibility of using a white light source for future flexible BLU devices. Finally a water-resist and a biocompatible PTFE-coated flexible LED biosensor can detect PSA at a detection limit of 1 ng/mL. These results show that the nitride-based flexible LED can be used as the future flexible display technology and a type of implantable LED biosensor for a therapy tool. The final part of this seminar will introduce a highly efficient and printable BaTiO3 thin film nanogenerator on plastic substrates. Energy harvesting technologies converting external biomechanical energy sources (such as heart beat, blood flow, muscle stretching and animal movements) into electrical energy is recently a highly demanding issue in the materials science community. Herein, we describe procedure suitable for generating and printing a lead-free microstructured BaTiO3 thin film nanogenerator on plastic substrates to overcome limitations appeared in conventional flexible ferroelectric devices. Flexible BaTiO3 thin film nanogenerator was fabricated and the piezoelectric properties and mechanically stability of ferroelectric devices were characterized. From the results, we demonstrate the highly efficient and stable performance of BaTiO3 thin film nanogenerator.

  • PDF

소 심낭의 무세포화에서 트립신이 이식편의 물리-역학적 및 조직학적 변화에 미치는 영향 (Effect of Trypsin on Physico-dynamic and Histological Changes after Decellularization of Bovine Pericardium)

  • 성용원;김용진;김수환;민병주;이영옥;임홍국
    • Journal of Chest Surgery
    • /
    • 제43권6호
    • /
    • pp.565-575
    • /
    • 2010
  • 배경: 이식편을 개발함에 있어서 숙주의 면역반응을 최소화하여 보다 더 오래 사용할 수 있게 하기위한 방법으로 무세포화에 대한 연구가 시행되고 있다. 저자들은 소 심낭의 무세포화의 과정에 효소제인 트립신 전처치가 물리역학적, 조직학적으로 미치는 영향에 대해 알아보고자 하였다. 대상 및 방법: 소 심낭편을 SDS와 Triton X-100 또는 N-lauroylsarcosinate와 Triton X-100으로 무세포화하는 것을 기본으로 한 군들과 0.1% 트립신/0.1% EDTA로 전처치를 추가한 군들에서 장력 검사를 실시하고, 생체 이식 후의 상태를 가정한 피로도 검사를 전후로 하여 투과도와 유순도는 검사하였고, 피로도 검사 전후로 조직학적인 변화를 광학현미경 및 전자현미경으로 관찰하였다. 결과: 트립신 처치를 추가한군과 아닌 군에서 기계적 장벽의 차이는 없었으나, 투과도와 유순도는 피로도검사 전과 후로 트립신 처치를 하지 않은 군에 비해 증가하였으며, 조직학적으로도 세포외 기질이 더 손상된 소견을 보였다. 걸론: 소 심낭의 무세포화에서 트립신 전처치는 세포외 기질의 손상을 유발하지만 기계적 장력에는 큰 영향을 미치지 않았으며, 피로도검사 전후 모두 투과도와 유순도를 증가시켰다. 무세포화과정에서 트립신과 같은 단백질 분해 효소제를 이용하기 위해서는 조직의 생체 물리적 손상을 최소화할 수 있는 다양한 방법을 조합한 연구가 더 필요하다.

에스트로젠과 프로게스테론이 골모세포의 증식과 활성에 미치는 영향 (Effects of Estrogen and Progesterone on the Proliferation and Activity of Osteoblastic cells Abstract)

  • 하국봉;김세원;손우성
    • 대한치과교정학회지
    • /
    • 제31권2호통권85호
    • /
    • pp.237-248
    • /
    • 2001
  • 치아이동에 대한 생력학적 반응은 골 형성과 재형성의 조합이라 할 수 있다. 골 형성과 흡수에는 국소적으로 작용하는 여러 부분비 인자가 관여한다. 대표적인 여성호르몬인 에스트로젠과 프로게스테론도 그 중의 한 인자로 성인 여성은 생리, 임신, 폐경 등 상태에 따라 체내 성호르몬 농도가 달라진다. 따라서 이러한 농도의 변화에 따라 골조직이 영향을 받을 수 있을 것으로 추정된다. 골모세포는 골흡수를 일으키는 호르몬인 PTH, Vit $D_3$ 등에 일차적으로 반응함으로써 골형성 뿐만 아니라 골흡수에도 일정한 역할을 하고 있어 파골 세포에 영향을 주는 부분비 인자도 추측해 볼 수있다. 본 연구에서는 ROS17/2.8 및 HOS 세포주를 배양하면서 에스트로젠 및 프로게스테론 등 여성 호르몬을 처리한후 골모세포의 증식과 활성에 미치는 영향을 측정하여 다음과 같은 결과를 얻었다. 1. 에스트로젠은 HOS 세포의 증식을 억제하였으며 ROS17/2.8 세포의 증식은 촉진하는 것으로 관찰되었다. 2. 에스트로젠은 HOS 세포의 alkaline phosphatase 활성을 증가시켰고 ROS 세포에서는 효소활성을 억제하는 것으로 나타났다. 3. 프로게스테론은 HOS 및 ROS17/2.8 세포 모두의 증식을 억제하였으며 골모세포의 alkaline phosphatase 활성에는영향을 미치지 못하였다. 4. 에스트로젠과 프로게스테론은 골모세포내에서 생성되는 superoxide, nitric oxide 및 gelatinase 활성 등 골모세포의 기능에는 유의한 변화를 일으키지 않았다.

  • PDF

남자프로골퍼의 30 야드 칩샷과 피치샷 동작의 운동학적 차이 (Kinematical Differences of the Male Professional Golfers' 30 Yard Chip Shot and Pitch Shot Motion)

  • 편은경;박영훈;염창홍;손승;서국웅;서국은
    • 한국운동역학회지
    • /
    • 제17권2호
    • /
    • pp.177-185
    • /
    • 2007
  • Even though there were no clear definitions of the short game and short game distance, short game capability is crucial for a good golf score. Generally, chip shot and pitch shot are regarded as two principal components of the short game. Chip shot is a short, low trajectory shot played to the green or from trouble back into play. Pitch shot is a high trajectory shot of short length. Biomechanical studies were conducted usually to analyze full swing and putting motions. The purpose of the study was to reveal the kinematical differences between professional golfers' 30 yard $53^{\circ}wedge$ chip shot and $56^{\circ}wedge$ pitch shot motions. Fifteen male professional golfers were recruited for the study. Kinematical data were collected by the 60 Hz three-dimensional motion analysis system. Statistical comparisons were made by paired t-test, ANOVA, and Duncan of the SPSS 12.0K with the $\alpha$ value of .05. Results show that both the left hand and the ball were placed left of the center of the left and right foot at address. The left hand position of the chip shot was significantly left side of that of the pitch shot. But the ball position of the pitch shot was significantly right side of that of the chip shot. All body segments aligned to the left of the target line, open, at address. Except shoulder, there were no significant pelvis, knee, and feet alignment differences between chip shot and pitch shot. These differences at address seem for the ball height control. Pitch shot swing motions(the shoulder and pelvis rotation and the club head travel distance) were significantly bigger than those of the chip shot. Club head velocity of the pitch shot was significantly faster than that of the chip shot at the moment of impact. This was for the same shot length control with different lofted clubs. Swing motion differences seem mainly caused by the same shot length control with different ball height control.

임산부 보행의 역학적 분석 (Biomechanical Analysis of gait after seven month pregnant)

  • 금명숙;유실;김영란;정남주;한윤수;이훈표;윤희중
    • 한국운동역학회지
    • /
    • 제12권1호
    • /
    • pp.15-30
    • /
    • 2002
  • The purpose of this study was analyzed the effect of kinematical and kinetical factors of lower extremity of form change in the cause of growth an unborn child during in pregnancy. Three pregnant women were selected from pregnant 24 weeks as subjects. Each subjects were required to walk with usual walking speed. Cinematographic and GRF data were collected during walking, and the kinematical and kinetical variables were calculated using Kwon3d. Based on the results of the study, the following conclusions were drawn : 1. Step width and Step length The change of form during the period of pregnancy was not statistically found significant in the step width and the step length. 2. Angle of lower extremity 1) The change of form during the period of pregnancy was not statistically found significant in the hip angle at right heel contact, mid stance, but it was statistically found significant in the hip angle at toe off on p<.05. 2) The change of form during the period of pregnancy was not statistically found significant in the knee angle at right heel contact, mid stance, but it was statistically found significant in the knee angle at toe off on p<.05. 3) The change of form during the period of pregnancy was not statistically found significant in the ankle angle at right heel contact, mid stance, but it was statistically found significant in the ankle angle at toe off on p<.05. 3. Ground reaction force 1) The change of form during the period of pregnancy was statistically found significant in medial-lateral force(Fx) on p<.001. 2) The change of form during the period of pregnancy was not statistically found significant in post-anterior force(Fy). 3) The change of form during the period of pregnancy was statistically found significant in impulse force and minimum peak of vertical reaction force on p<.001, p<.01 but it was not statistically found significant in second maximum force.

가토 하악골에서 신연 골형성술시 신연속도에 따른 TGF-$\beta$1, IGF-I, bFGF의 발현 (THE EXPRESSION OF TGF-$\beta$1, IGF-I, BFGF IN DISTRACTION OSTEOGENESIS ACCORDING TO DIFFERENT DISTRACTION RATES IN RABBIT'S MANDIBLE)

  • 신선아;지유진;송현철
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제27권3호
    • /
    • pp.205-217
    • /
    • 2005
  • Distraction osteogenesis is a technique of lengthening bone including soft tissue by gradual separation of surgically divided bone surfaces. Although the biomechanical, histological, and ultrastructural changes associated with distraction osteogenesis have been widely described, the molecular mechanisms governing the formation of new bone in distracted bone segments remain largely unclear. However, such information has significant clinical implications because it may enable targeted therapeutic manipulations designed to accelerate osseous regeneration. The purpose of this study was to evaluate the expression of TGF-$\beta$1, IGF-I and bFGF in distraction osteogenesis according to different distraction rates in a rabbit's mandible. When twenty-four adult rabbits underwent open osteotomy between the premolar and mental foramen, an external bilateral distraction device was applied. Latency was allowed for five days before distraction. Three different distraction rates were 0.7 mm/day (A, n=8), 1.4 mm/day (B, n=8) and 2.4 mm/day (C, n=8). The distraction device was activated with the same distraction rhythms of twice a day until 4.9 mm (A & B group) and 8.4 mm (C group) length gains was achieved. The animals were sacrificed at postoperative 3, 7, 14 and 28 days. The bony specimens were stained with H&E for histologic examination, and RT-PCR analysis was done for the identification of the expression of TGF-$\beta$1, IGF-I and bFGF. The results obtained from this study were as follows : The 0.7 mm/day and 1.4 mm/day distraction rate groups were shown to improve regenerative bone formation on radiographic and histologic examination. Also, TGF-$\beta$1, IGF-I and bFGF expression increased in the 0.7 mm/day and 1.4 mm/day distraction rate groups. But the 2.4 mm/day distraction rate group specimen was different with adjacent normal bone and hardly expressed of growth factors. These findings suggest that improved new bone formation in the 0.7 mm/day and 1.4 mm/day distraction rates is associated with enhanced expression of TGF-$\beta$1, IGF-I and bFGF by mechanical tension stress. Additionally, the 0.7 mm/day and 1.4 mm/day distraction rate groups were significantly different from the 2.4 mm/day distraction rate group in the expression of growth factors. According to the above results, it seems possible to apply a distraction rate of up to 1.4 mm/day a day in rabbit's mandible. And further studies are needed to evaluate growth factors of TGF-$\beta$1 and IGF-I, which are excellent in expression.

수직력하에서 임프란트 나사형태에 따른 응력의 3차원 유한요소법적 분석 (THE THREE DIMENSIONAL FINITE ELEMENT ANALYSIS OF STRESS ACCORDING TO IMPLANT THREAD DESIGN UNDER THE AXIAL LOAD)

  • 김우택;차용두;오세종;박상수;김현우;박양호;박준우;이건주
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제27권2호
    • /
    • pp.111-117
    • /
    • 2001
  • There are three designs of thread form in screw type implants: V-thread, Reverse buttress thread and Square thread. The purpose of this study was to find out how thread form designs have an influence on the equivalent stress, equivalent strain, maximum shear stress and maximum shear strain and which design of thread form generates more maximum equivalent stress and strain. 3-D finite element analysis was used to evaluate the stress and strain patterns of three tread types. The results of this study were as follow. 1. Under the 200N of axial load, the value of maximum equivalent stress is smallest in square thread and there is no significant difference between that of V thread and reverse buttress thread. 2. Under the 200N of axial load, the value of maximum equivalent strain is largest in V thread and smallest in square thread. 3. Under the 200N of axial load, the value of maximum shear stress is smallest in square thread and there is no significant difference between that of V thread and reverse buttress thread. 4. Under the 200N of axial load, the value of maximum equivalent strain is largest in V thread and there is no significant difference between that of square thread and reverse buttress thread. 5. Above results show that the square thread has special advantages in stress and strain compared with other thread types, especially in shear stess which is most determinant to implant-bone interface. Considering the superior biomechanical properties of square form implant, we presume that square form implant has better clinical results than the other types of implants in the same clinical conditions.

  • PDF

악관절원판의 인위적 전방변위술시행후 악관절구성조직에서 Fibronectin의 분포변화 (DISTRIBUTION IN FIBRONECTIN OF THE RABBIT TEMPOROMANDIBULAR JOINT TISSUES FOLLOWING SURGICAL INDUCTION OF ANTERIOR DISK DISPLACEMENT : IMMUNOHISTOCHEMICAL STUDY)

  • 김욱규;정인교;박봉수
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제25권4호
    • /
    • pp.337-349
    • /
    • 1999
  • The extracellular matrix(ECM) is a complex network of different combination of collagens, glycosaminoglycans, laminin, fibronectin, and many other glycoproteins including proteolytic enzymes. The composition and organization of the ECM contributes to the uniques physical or biomechanical properties of a tissue. Fibronectins(FN) are dimeric glycoproteins located on cell surfaces, in the matrix of connective tissue, and in blood. Fibronectins mediate cell attachment to collagen substratum and have been implicated in a variety of important biological processes, including embryogenesis and cell differentiation. The purpose of this study was to determine the effects of surgical induction of anterior disk displacement(ADD) on distribution of fibronectin in the rabbit temporomandibular joint(TMJ) tissues included the articular cartilage, disc, retrodiscal tissue, articular eminence using an immunohistochemical technique. The left TMJ was exposed surgically, and all discal attachments were severed except for the posterior attachment. The disk was then repositioned anteriorly and sutured to the zygomatic arch. The right TMJ served as a shamoperated control. Normal joints were used as a nonoperated control. Fourty-five rabbits were used for experiments in total. For fibronectin immunohistochemical study, eighteen rabbits (one normal group and 5 experimental groups, each group consists of 3 rabbits) were used. The experimental rabbits were sacrified after operation period of 2, 3, 4, 6 and 8 weeks on fibronectin. The obtained results were as follows ; 1. Fibronectin immunoreaction on all TMJ tissues(mandibular condyle, articular disc, retrodiscal tissue, articular eminence) in the normal rabbit was observed. Especially the reverse cell layer and proliferation zone of articular cartilage of condyle show strong positive reaction. 2. Depletion of fibronectin in the all TMJ tissues except hypertrophic zone of articular cartilage occurred at 2 weeks following induction of ADD. 3. The restoration of immunoreaction at 4 weeks was observed and a progressive increasing reaction at 6 weeks, 8 weeks also was found. Our study generally showed degenerative changes in TMJ tissues after ADD although TMJ tissues adapted or degenerated to abnormal loads and stress distribution according to the remodeling capacity of TMJ tissues.

  • PDF

하악 임플란트 overdenture에서 anchorage system이 하중전달에 미치는 영향 (EFFECT OF ANCHORAGE SYSTEMS ON LOAD TRANSFER WITH MANDIBULAR IMPLANT OVERDENTURES : A THREE-DIMENSIONAL PHOTOELASTIC STRESS ANALYSIS)

  • 김진열;전영찬;정창모
    • 대한치과보철학회지
    • /
    • 제40권5호
    • /
    • pp.507-524
    • /
    • 2002
  • Load transfer of implant overdenture varies depending on anchorage systems that are the design of the superstructure and substructure and the choice of attachment. Overload by using improper anchorage system not only will cause fracture of the framework or screw but also may cause failure of osseointegration. Choosing anchorage system in making prosthesis, therefore, can be considered to be one of the most important factors that affect long-term success of implant treatment. In this study, in order to determine the effect of anchorage systems on load transfer in mandibular implant overdenture in which 4 implants were placed in the interforaminal region, patterns of stress distribution in implant supporting bone in case of unilateral vertical loading on mandibular left first molar were compared each other according to various types of anchorage system using three-dimensional photoelastic stress analysis. The five photoelastic overdenture models utilizing Hader bar without cantilever using clips(type 1), cantilevered Hader bar using clips(type 2), cantilevered Hader bar with milled surface using clips(type 3), cantilevered milled-bar using swivel-latchs and frictional pins(type 4), and Hader bar using clip and ERA attachments(type 5), and one cantilevered fixed-detachable prosthesis(type 6) model as control were fabricated. The following conclusions were drawn within the limitations of this study, 1. In all experimental models. the highest stress was concentrated on the most distal implant supporting bone on loaded side. 2. Maximum fringe orders on ipsilateral distal implant supporting bone in a ascending order is as follows: type 5, type 1, type 4, type 2 and type 3, and type 6. 3. Regardless of anchorage systems. more or less stresses were generated on the residual ridge under distal extension base of all overdenture models. To summarize the above mentioned results, in case of the patients with unfavorable biomechanical conditions such as not sufficient number of supporting implants, short length of the implant and unfavorable antero-posterior spread. selecting resilient type attachment or minimizing distal cantilever bar is considered to be appropriate methods to prevent overloading on implants by reducing cantilever effect and gaining more support from the distal residual ridge.